1,3-Dipolar Character of Six-membered Aromatic Rings. Part $43 .{ }^{1}$ Cycloadditions leading to Tricyclic Adducts

By Alan R. Katritzky.* Nicholas Dennis, Gebran J. Sabongi, \# and Lemi Turker, School of Chemical Sciences, University of East Anglia, Norwich NR4 4TJ

Allyl alcohol reacts with 1 -heteroaryl-3-oxidopyridiniums to give a tricyclic product (10) in which the OH group hads added to the $\alpha \beta$-unsaturated ketone. Analogous products are obtained from N-allylbenzenesulphonamide, acrylic acid. and 2 -vinylpyridine. Further transformations of the primary adducts are described.

A major aim of our cycloaddition work is the development of new synthetic methods in pyridine chemistry. Thus, the reversibility of cycloadditions suggests the conversion of cycloadducts (2) into derivatives (3) which should allow the substitution of 3 -hydroxypyridine in the
derivatives (6) suggested that suitable endo-adducts of type (7) should undergo spontaneous cyclisation to the tetracycles (9). The present paper describes these and related systems.

The betaines used in this study ($13 \mathrm{a}-\mathrm{d}$) were gener-

(5)
(2)

(6)

(7)
(8) $X=0$.

(9)
(10) $X=O, A=B=H$
(11) $X=\mathrm{NSO}_{2} \mathrm{Ph}$;
$A=B=H$
$X=0$

(13)

(14)

(15)

(16)
$a_{i} R=5-$ Nitro-2- pyridyl
$b_{i} R=4,6$-Dimethylpyrimidin-2-yl
c; $R=4,6$-Dimethoxy-1,3,5-triazin-2-yl
d; R $=3$ - p-Bromophenyl-3-oxopropen-1-yl

4- and/or 5-positions $[(1) \rightarrow(4)]$. We have described the preparation of 4-bromo-3-hydroxypyridine by this method. ${ }^{2}$ However, attempts to change the OH function of 3-hydroxypyridine by an analogous route are hindered by the preferential reaction ${ }^{2}$ of nucleophiles with the $\mathrm{C}=\mathrm{C}$ bond in (2). We therefore examined methods of protecting this double bond. The facile conversion ${ }^{3}$ of styrene adducts (5) into the tetracyclic \ddagger Previously transliterated as G. J. Sabounji.
ated in situ either from their salts (14a-d) or from their dimers. Each betaine formed initially the syn-dimer $(15 a-d)$, but in the pyrimidinyl case, (15 b) equilibrated to give mainly (16b).

RESULTS AND DISCUSSION

Allyl Alcohol.-Whereas the pyridyl betaine (13a) reacted with allyl acetate to give the normal cycloadduct (17a), shown to have the endo structure by its n.m.r.
spectrum (Table 1), the reactions of betaines (13a), (13b), and (13c) with allyl alcohol each gave a product [(10a), (10b), and (10 c) in $48 \%, 85 \%$, and 10% yield, respectively] in which cyclisation of the intermediates ($8 \mathrm{a}-\mathrm{c}$) had taken place. Structures (10) were proved by the n.m.r. spectra (see below) (Table 2), together with the i.r. spectra [saturated $v(\mathrm{C}=\mathrm{O})$ at $1720-1730 \mathrm{~cm}^{-1}$] and elemental analysis. The reaction with the pyrimidinyl dimer (16b) also yielded 14% of the exo-adduct $(22 \mathrm{~b})$, in which cyclisation of the type (7) $\rightarrow(9)$ cannot occur. The poor yield obtained of (10 c) is due to the
addition of allyl alcohol to the triazinyl dimer (15c) to give (24c). Similar products have been obtained previously from the pyridyl dimer (15a). ${ }^{4}$ Structure (24c) was proved by the n.m.r. and i.r. spectrum: the $\alpha \beta$-unsaturated carbonyl band of the dimer (16c) was lost, the new saturated $v(\mathrm{C}=\mathrm{O})$ evidently overlapping with the other saturated $v(\mathrm{C}=\mathrm{O})$. The ${ }^{1} \mathrm{H}$ n.m.r. spectrum showed the disappearance of the $\alpha \beta$-olefinic protons.

Further Transformations of Allyl Alcohol Tricycles.The pyrimidinyl derivative (10b) reacted with phenylhydrazine to give the corresponding phenylhydrazone

Table 1
${ }^{1} \mathrm{H}$ N.m.r. data (100 MHz) for adducts by addition at the 2,6 -positions of the pyridine ring ${ }^{\boldsymbol{a}}$
(a) Chemical shifts

Proton	$(17 a)^{b}$	$(18 \mathrm{a})^{\circ}$	(19d) ${ }^{\text {b }}$	(20b) ${ }^{6}$	(21b) ${ }^{\text {b }}$	(22b) ${ }^{\text {b }}$	(23d) ${ }^{\text {b }}$	$(37){ }^{\text {b }}$	$(38){ }^{\text {c }}$	$(40)^{b}$	$(41){ }^{\text {b }}$	$(42)^{b}$	$(43){ }^{\text {b }}$
1	$4.82{ }^{\circ}$	$5.01{ }^{\circ}$	$4.32{ }^{\text {h }}$	$5.12{ }^{\circ}$	$5.12{ }^{\circ}$	$4.96{ }^{\text {g }}$	$4.41{ }^{\text {h }}$	$5.20{ }^{h}$	$5.00{ }^{\prime}$	$5.48{ }^{\prime}$	$5.17{ }^{\circ}$	$5.09{ }^{\circ}$	$5.04{ }^{h}$
3	$6.11{ }^{h}$	$5.86{ }^{\text {h }}$	$5.98{ }^{\text {a }}$	$5.94{ }^{\text {h }}$	$5.80{ }^{\circ}$	$5.78{ }^{\text {h }}$	$5.98{ }^{\text {h }}$	$5.92{ }^{\text {h }}$	$6.06{ }^{\text {h }}$	$5.88{ }^{h}$	$5.89{ }^{\text {h }}$	$6.09{ }^{\text {n }}$	$5.92{ }^{\text {h }}$
4	$7.28{ }^{\text {h }}$	$7.40{ }^{j}$	$7.18{ }^{\text {h }}$	$6.76{ }^{\text {h }}$	$6.96{ }^{\text {h }}$	$7.25{ }^{\text {h }}$	$7.24{ }^{\text {h }}$	$7.06{ }^{\text {k }}$	$6.94{ }^{\text {h }}$	7.27 h	$7.20{ }^{\text {h }}$	$7.32{ }^{\text {h }}$	$7.20{ }^{\text {h }}$
5	$5.35{ }^{k}$	$5.16{ }^{\text {k }}$	$4.66{ }^{k}$	$5.50{ }^{k}$	$5.70{ }^{k}$	$5.16{ }^{\text {g }}$	$4.75{ }^{\text {g }}$	$5.31{ }^{\circ}$	$5.63{ }^{k}$	$5.12{ }^{\text {g }}$	$5.53{ }^{\circ}$	$5.52{ }^{\text {k }}$	5.50
6	$3.10{ }^{\prime}$	$2.80{ }^{\text {j }}$	$3.50{ }^{\text {m }}$	$3.92{ }^{\text {l }}$	$4.13{ }^{1}$	$3.98{ }^{n}$	$2.98{ }^{\text {j }}$	$3.61{ }^{h}$	0	$3.02{ }^{\text {h }}$	$3.06{ }^{\text {h }}$	$3.36{ }^{\text {m }}$	$3.54{ }^{j}$
7-exo	$2.78{ }^{n}$	$2.56{ }^{j}$	$2.70{ }^{\text {n }}$	$2.92{ }^{n}$	$2.86{ }^{1}$	$2.20{ }^{\text {j }}$	$2.84{ }^{\text {j }}$	$2.76{ }^{1}$	o	$2.74{ }^{n}$	$2.79{ }^{n}$	$2.90{ }^{n}$	2.70
7-endo	$1.56{ }^{k}$	$1.60{ }^{\text {h }}$	$2.13{ }^{\text {h }}$	$2.02{ }^{\text {h }}$	$2.86{ }^{\text {l }}$	$1.89{ }^{\text {h }}$	$2.06{ }^{\text {h }}$	$2.30{ }^{\text {j }}$	o	$2.00^{\text {h }}$	$2.25{ }^{\text {j }}$	$2.01{ }^{\text {h }}$	$2.12{ }^{\text {h }}$
Aromatic		6.7 -	7.5-	6.3 -	6.3-	$6.27{ }^{\text {' }}$	7.4	6.3-	6.6-	$6.27{ }^{\text {i }}$	$6.38{ }^{\text {i }}$	$6.38{ }^{\text {' }}$	$6.38{ }^{\text {' }}$
		$8.9{ }^{\text {l }}$	$7.7{ }^{1}$	$8.5{ }^{\text {l }}$	$8.5{ }^{1}$		$7.5{ }^{\text {j }}$	$8.5{ }^{1}$	$9.1{ }^{1}$				
CMe			$1.45{ }^{i}$	$2.25{ }^{\text {i }}$	$2.25{ }^{\text {i }}$	$2.20{ }^{i}$	$1.45{ }^{\text {i }}$	$2.22{ }^{\text {i }}$	$2.25{ }^{\text {i }}$	$2.25{ }^{\text {i }}$	$2.25{ }^{7}$	$2.25{ }^{\text {i }}$	2.27
CH_{2}	$4.30{ }^{\text {n }}$	$2.56{ }^{\text {j }}$				$3.60{ }^{\text {h }}$							
	$3.88{ }^{\text {h }}$	$2.80{ }^{3}$				$3.40{ }^{\text {h }}$							
OMe	$2.15{ }^{\text {i }}$												$3.68{ }^{\text { }}$
$\stackrel{+}{\mathrm{N}}-\mathrm{Me}$									$4.49{ }^{\text {i }}$				
Proton	$(44){ }^{\text {b }}$	$(45){ }^{b}$	$(46){ }^{b}$	$(47)^{b}$	$(48){ }^{b}$	$(49)^{b}$	(50) ${ }^{\text {d }}$	(51) ${ }^{b}$	$(52)^{b}$	(53) ${ }^{\text {b }}$	(54) ${ }^{\text {b.e }}$	(55) ${ }^{\text {b.f }}$	
1	$5.14{ }^{\text {h }}$	$4.92{ }^{\text {g }}$	$4.96{ }^{\text {g }}$	5.00°	$5.12{ }^{h}$	$5.06{ }^{\text {h }}$	$4.80{ }^{\text {h }}$	$5.26{ }^{\text {i }}$	$5.58{ }^{\circ}$	$5.10{ }^{\text {j }}$	$5.62{ }^{\text {i }}$	$5.62{ }^{\text {i }}$	
3	$5.89{ }^{\text {h }}$	$6.05{ }^{\text {n }}$	$6.07{ }^{\text {h }}$	$5.98{ }^{\text {g }}$	$6.08{ }^{\text {h }}$	$5.99{ }^{\text {h }}$	$5.83{ }^{\text {h }}$	$5.88{ }^{\text {n }}$	$5.90{ }^{\text {h }}$	$5.89{ }^{\text {n }}$	$5.50{ }^{j}$	$5.66{ }^{\text {j }}$	
4	$7.34{ }^{\text {h }}$	$7.18{ }^{\text {h }}$	$7.14{ }^{h}$	$7.19{ }^{\text {h }}$	$7.16{ }^{\text {h }}$	$7.08{ }^{\text {h }}$	$7.02{ }^{\text {h }}$	$7.18{ }^{\text {h }}$	$7.39{ }^{\text {h }}$	$7.26{ }^{\text {n }}$	$7.55{ }^{\text {j }}$	7.20-7	
5	$5.55{ }^{\text {® }}$	$5.41{ }^{k}$	$5.57{ }^{k}$	$5.60{ }^{k}$	$5.76{ }^{\text {g }}$	$5.42{ }^{\text {g }}$	$5.35{ }^{\text {g }}$	$5.58{ }^{\text {k }}$	$5.45{ }^{\circ}$	$5.22{ }^{\text {j }}$	$5.71{ }^{\circ}$	$5.83{ }^{\text {g }}$	
6	$2.96{ }^{\text {j }}$	$4.49{ }^{n}$	$5.43{ }^{n}$	$4.84{ }^{\text {j }}$				3.32°	$4.00{ }^{\text {i }}$	$2.60{ }^{1}$			
7-exo	$2.96{ }^{j}$	$2.84{ }^{\text {m }}$	$2.98{ }^{m}$	$2.70{ }^{1}$	$3.49{ }^{\text {n }}$	$3.10{ }^{\text {h }}$	$2.56{ }^{\text {h }}$		$3.49{ }^{\circ}$	$2.50{ }^{1}$			
7 -endo	$2.02{ }^{\text {h }}$	$1.65{ }^{\text {h }}$	$1.67{ }^{h}$	$1.85{ }^{\text {j }}$	$2.38{ }^{\text {g }}$	1.76	$2.02{ }^{\text {j }}$	$4.00^{\text {i }}$					
Aromatic	$6.38{ }^{\text {i }}$	6.36 '	$6.39{ }^{\text {i }}$	$6.32{ }^{\text {i }}$	$6.40{ }^{i}$	$6.38{ }^{\text {i }}$	$6.29{ }^{\text {i }}$	$6.38{ }^{\text {i }}$	$6.36{ }^{\text {i }}$	$6.32{ }^{\text { }}$			
CMe	$2.27{ }^{\text {i }}$	$1.20{ }^{p}$	$2.25{ }^{\text {i }}$	$1.74{ }^{\text {i }}$	1.22^{k}	$1.22{ }^{k}$	$2.24{ }^{\text {i }}$	$1.26{ }^{k}$	$1.32{ }^{k}$				
		$2.25{ }^{\text {i }}$				$1.50{ }^{i}$	$2.25{ }^{\text {i }}$	$2.22{ }^{\text {i }}$	$2.22{ }^{\text {i }}$				
CH_{2}		$3.56{ }^{k}$						$4.10{ }^{p}$	$4.10{ }^{p}$	$\begin{aligned} & 1.20- \\ & 2.00^{j} \end{aligned}$	$4.24{ }^{p}$	$4.29{ }^{p}$	
OMe	$3.68{ }^{\text { }}$		$2.04{ }^{\text {i }}$				$1.94{ }^{\text {i }}$						

(b) Coupling constants (Hz)

	(17a)	(18a)	(19d)	(20b)	(21b)	(22b)	(23d)	(37)	(38)	(40)	(41)	(42)	(43)
$J(1,3)$	1	1	2	1	0.5	2	2	1		1	1	1	2
$J(1,7-$ exo $)$	8	7	7	8	8	10	8	8	8	5	8	8	8
$J(3,4)$	10	12	10	9	10	11	10	10	10	10	10	10	10
$J(4,5)$	5	5	5	6	6	5	5	5	5	8	5	6	5
$J(5,6)$	5	5	5	6	6				5			6	5
J (6,7-exo)	8	o	5	9	10	o	4	4	o	9	3	8	9
J (6,7-endo)	6	5	6	7	8	5	10	9	o	4	8	6	6
$J(6,9 \mathrm{~A})$	5	o				11							
$J(6,9 B)$	10	o				8							
J (7-exo,7-endo)	14	13	14	14	16	10	14	14	o	15	14	14	14
$J(9 \mathrm{~A}, 9 \mathrm{~B})$	11	o				12							
	(44)	(45)	(46)	(47)	(48)	(49)	(51)	(51)	(52)	(53)	(54)	(55)	
$J(1,3)$	2	2	1		1	1	2	1	1	1	1	1	
$J(1,7-$ exo $)$	8	8	9	7	8	8	9		5	6			
$J(3,4)$	10	10	10	10	10	10	10	10	10	10	10	10	
$J(4,5)$	5	5	5	5	6	5	5	6	8	5	5	5	
$J(5,6)$	5	5	5	5				6	0.5	5			
$J(6,7-$ exo $)$	o	10	9	9						o			
J (6,7-endo)	9	5	4	6						o			
J (7-exo,7-endo)	14	14	14	14	14	14	14						
$J(9 \mathrm{~A}, 9 \mathrm{~B})$										o			
$\begin{aligned} & \quad \text { In p.p.m. } \\ & \text { m.p. } 162^{\circ} \mathrm{C} . \\ & \text { n Quartet of } \end{aligned}$	relati Dou ouble		as inte ble d asura	atan let. due to		CDCl_{3} Overla lap.	${ }^{c}$ In (C with o uartet	SO. sign	${ }_{\boldsymbol{k}}^{\mathrm{n}} \mathrm{CCl}$	${ }^{\mathrm{e}} \mathrm{I}{ }^{\text {Iso }}$	m.p iplet	${ }^{\circ} \mathrm{C}$. Dou	ome iplet

${ }^{1} \mathrm{H}$ N.m.r. data (100 MHz) for tricyclic adducts ${ }^{\text {a }}$,									
(a) Chemical shifts									
Proton	$(10 a)^{\text {c }}$	(10b) ${ }^{\text {c }}$	(10c) ${ }^{\text {c.d }}$	$(11 a)^{e}$	(11b) ${ }^{\text {c }}$	(12b) ${ }^{\text {c,e }}$	(25) ${ }^{f, 0}$	(26) e, h	(27) ${ }^{\text {c.i }}$
1	$5.38{ }^{\text {l }}$	$5.01{ }^{\text {l }}$	$5.05{ }^{\text {l }}$	$4.68{ }^{\text {l }}$	$4.92{ }^{\text {l }}$	$5.25{ }^{\text {m }}$	$5.70{ }^{l}$	$4.30{ }^{\prime}$	$4.96{ }^{n}$
3	$2.98{ }^{\circ}$	$2.30{ }^{m}$	$2.43{ }^{p}$	$2.80{ }^{m}$	$2.66{ }^{\circ}$		$2.00-$	$4.05{ }^{\text {l }}$	$2.00{ }^{\text {m }}$
							$2.50{ }^{\text {m }}$		
4	$5.32{ }^{m}$	$4.70{ }^{\text {r }}$	$4.74{ }^{\text {r }}$	$4.27{ }^{\text {q }}$	$4.24{ }^{9}$	$5.25{ }^{\text {m }}$	4.50 *	$4.90{ }^{n}$	$4.40{ }^{m}$
5	$5.80{ }^{n}$	$5.50{ }^{n}$	$5.54{ }^{n}$	$5.14{ }^{n}$	$5.18{ }^{n}$	$5.58{ }^{n}$	$5.34{ }^{n}$	$5.02{ }^{n}$	$5.28{ }^{n}$
6	3.46 *	$2.94{ }^{\text {* }}$	$3.00{ }^{\text {s }}$	$2.90{ }^{m}$	$2.84{ }^{\text {m }}$	$3.14{ }^{\text {* }}$	3.40 -	$3.10{ }^{m}$	2.40 -
							$3.90{ }^{\text {m }}$		$2.80{ }^{\text {m }}$
7-exo	$2.98{ }^{\text {m }}$	$2.50{ }^{m}$	$2.50{ }^{m}$	$2.12{ }^{\text {q }}$		$2.60{ }^{*}$	$2.88{ }^{\text { }}$	$2.70{ }^{\text {m }}$	2.40 -
									$2.80{ }^{\text {m }}$
7 -endo	2.10^{\prime}	$1.62{ }^{\text {a }}$	1.70 \%	$1.68{ }^{7}$	$1.50{ }^{\text {l }}$	$1.84{ }^{\text {l }}$	$1.50{ }^{\text {g }}$	$1.58{ }^{\text {m }}$	$1.60{ }^{\text {s }}$
9 -exo	$4.20{ }^{\text {* }}$	$3.92{ }^{\text {q }}$	3.70-	$3.40{ }^{\text {q }}$	$3.30{ }^{\text { }}$	$4.24{ }^{\text {a }}$	3.40 -	$3.50{ }^{\text {a }}$	$3.67{ }^{q}$
			$4.20{ }^{\text {m }}$				$3.90{ }^{\text {m }}$		
9 -endo	4.20 ${ }^{\text {* }}$	$3.70{ }^{\text {q }}$	3.70-	$3.16{ }^{\text {q }}$	$3.12{ }^{\text {q }}$	$3.77{ }^{\text {q }}$	3.40 -	$2.70{ }^{m}$	$3.67{ }^{\text {q }}$
			$4.70{ }^{\text {m }}$				$3.90{ }^{n}$		
Proton	(28) ${ }^{\text {c }}$	(29) ${ }^{\text {c }}$	(30) ${ }^{\circ}$	(31) ${ }^{\circ}$	$(32){ }^{c, j}$	(33) ${ }^{k}$	$(35 \mathrm{a})^{c}$	$(35 b){ }^{\text {c }}$	$(36){ }^{\circ}$
1	5.00^{l}	$5.65{ }^{\text {l }}$	$5.49{ }^{\text {l }}$	$5.64{ }^{1}$	$6.00{ }^{1}$	$5.43{ }^{l}$	$5.40{ }^{\text {l }}$	$5.08{ }^{\text {b }}$	$5.00{ }^{l}$
3	$2.20{ }^{\text {m }}$						$3.02{ }^{\circ}$	$2.40{ }^{\text {a }}$	$2.75{ }^{l}$
4	$4.74{ }^{\text {r }}$	$5.04{ }^{1}$	$4.84{ }^{1}$	$4.89{ }^{1}$	$6.53{ }^{1}$	$6.47{ }^{1}$	$5.68{ }^{\circ}$	$5.22{ }^{\text {r }}$	$6.00{ }^{m}$
5	$5.50{ }^{n}$	$5.84{ }^{n}$	$5.65{ }^{n}$	$5.84{ }^{n}$	$5.62{ }^{\prime}$	$5.56{ }^{\text {n }}$	$6.10{ }^{n}$	$5.78{ }^{n}$	$6.00{ }^{m}$
6	$2.94{ }^{\text {* }}$	3.00 *	$3.00{ }^{\text {m }}$	$2.90{ }^{\text {m }}$	$3.30{ }^{\text {* }}$	3.12 *	$3.74{ }^{\text {r }}$	$3.14{ }^{\text {r }}$	4.50 *
7-exo	$2.20{ }^{\text {m }}$	2.50 m	$2.40{ }^{\text {m }}$	$2.40{ }^{\text {m }}$	$2.70{ }^{\text {r }}$	$2.64{ }^{\text { }}$	$2.95{ }^{m}$	$2.50{ }^{\text {m }}$	$2.29{ }^{\text {m }}$
7 -endo	$1.68{ }^{\text {q }}$	$1.66{ }^{\text {q }}$	$1.50{ }^{\text {q }}$	1.49 q	$1.95{ }^{\text {l }}$	$1.82{ }^{\text {l }}$	$2.34{ }^{\text {q }}$	$1.98{ }^{\text {q }}$	$1.86{ }^{\text {q }}$
9 -exo	$3.96{ }^{\text {q }}$	$4.10{ }^{\text {q }}$	$3.90{ }^{\text {q }}$	$3.91{ }^{\text {q }}$	$4.38{ }^{n}$	$4.24{ }^{n}$			
9 -endo	$3.76{ }^{\text {q }}$	$3.69{ }^{\text {q }}$	$3.52^{\text {q }}$	$3.46{ }^{\text {q }}$	$3.50{ }^{\text {q }}$	$3.30{ }^{\text {q }}$			
(b) Coupling constants (Hz)									
	(10a)	(10b)	(10c)	(11a)	(11b)	(12b)	(25)	(26)	(27)
J(1,7-exo)	9	7	8	8	8	6	8	5	8
$J(3-e x o, 4)$	t	2	t	6	5				
$J(3-e n d o, 4)$	t	4	t	1	1				
$J(4,5)$	7	7	6	7	6	7	7	8	7
$J(5,6)$	7	7	6	7	6	7	7	8	7
$J(6,7-e x o)$	t	6	t	6	t	t	t	t	t
$J(6,7-$ endo $)$	1	2	2		1	1	2	1	2
$J(6,9-e x o)$	t	5	t	4	2	7	4	4	3
$J(6,9-e n d o)$	t	1	t	4	5	4	1	t	t
J (7-exo,7-endo)	16	13	14	13	14	14	t	13	11
$J(9-e x o, 9-$ endo $)$	t	10	t	10	12	10	12	10	12
	(28)	(29)	(30)	(31)	(32)	(33)	(35a)	(35b)	(36)
$J(1,7-$ exo $)$	6	6	7	7	6	7	8	8	8
$J(3-e x o, 4)$	5						t	7	t
$J(3-e n d o, 4)$							t	2	t
$J(4,5)$	7	7	8	8	6	6	8	7	t
$J(5,6)$	7	7	8	8	6	6	8	7	t
$J(6,7-$ exo $)$	t	t	t	t	8	t	10	10	t
$J(6,7-e n d o)$	2	3	3	2	1	1	2	2	3
J (6.9-exo)	5	6	6	6	9	8			
J (6.9-endo)	2	2	3	3	4	4			
J (7-exo,7-endo)	13	14	14	14	14	14	16	14	14
$J(9-e x o, 9-e n d o)$	10	10	10	10	9	10			

${ }^{a}$ In p.p.m. relative to SiMe_{4} as internal standard. ${ }^{b}$ Numbering is non-systematic, for comparison only. ${ }^{c}$ In CDCl_{3}. ${ }^{a} \mathrm{OMe}$, 4.00 (footnote p). ${ }^{e} \mathrm{C}-\mathrm{CH}_{3}, 2.27$ (footnote p). ${ }^{f} \mathrm{~N} H, 9.11$ (footnote p). ${ }^{g}$ In $\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO} .{ }^{\boldsymbol{h}} 2^{\prime \prime}-\mathrm{H}, 6^{\prime \prime}-\mathrm{H}, 2.70$ (footnote m); $3^{\prime \prime}-\mathrm{H},-$ $5^{\prime \prime}-\mathrm{H}, 3.10$ (footnote m); CMe, 2.22 (footnote p). ${ }^{i} 2-\mathrm{H}, 4.40$ (footnote m). ${ }^{j} \mathrm{CMe}, 2.20$ (footnote p). ${ }^{k} \mathrm{CMe}, 2.15$ (footnote p). ${ }^{l}$ Doublet. ${ }^{m}$ Overlapped with other signals. ${ }^{n}$ Triplet. ${ }^{\circ}$ Pseudo-singlet. ${ }^{p}$ Singlet. ${ }^{q}$ Double doublet. ${ }^{r}$ Quartet of doublets. *Multiplet. ${ }^{t}$ Not measurable owing to signal overlap.
(25), but several attempts to achieve a Fischer indole synthesis ${ }^{5}$ failed. Similarly, attempts at the Pfitzinger ${ }^{6}$ and Friedlaender quinoline ${ }^{7}$ synthesis failed. Cycloadduct (10b) condensed with benzaldehyde to the styryl derivative (12b) and with morpholine to form the enamine (26), which did not condense smoothly with methyl vinyl ketone. Borohydride reduction of (10b) gave the corresponding alcohol (27).

Under acidic conditions, bromination of (10b) occurred exclusively in the pyrimidine ring to give the N-(5-bromo-4,6-dimethylpyrimidin-2-yl) derivative (28). In pyridine solution, (10 b) yielded the tribrominated compound (29) whereas the 2-pyridyl tricyclic adduct (10a)
gave a mixture of the dibromo- (30) and tribromo- (31) compounds. The value of $v(\mathrm{C}=0)$ in (29)-(31) was raised by the α-halogenation to $1750-1740 \mathrm{~cm}^{-1}$.
Benzofuroxan reacted with (10b) to form the quinoxaline 1,4-dioxide (32) in an example of the ' Bierut reaction ${ }^{8} 8$ The dioxide (32) was stereospecifically reduced by KBH_{4} to the monoxide (33). Structures (32) and (33) were established by spectroscopic evidence: in the i.r. spectrum no $v(\mathrm{C}=\mathrm{O})$ or $v(\mathrm{OH} / \mathrm{NH})$ was present; the aromatic ring-stretch showed at $1580 \mathrm{~cm}^{-1}$ and the N-oxide $v(\mathrm{~N}-\mathrm{O})$ at $1360-1370 \mathrm{~cm}^{-1}$ (cf. ref. 9). This last band was considerably weaker in (33) than in (32).

Allylamine and Derivatives.-Allylamine itself, under
various conditions did not react with betaine (13b) but only with the dimer (16 b) to give the dimer addition product (34), whereas with (13a) no homogeneous product

(17) $X=\mathrm{CH}_{2} \mathrm{OCOMe}$
(22) $\mathrm{X}=\mathrm{CH}_{2} \mathrm{OH}$
(18) $\mathrm{X}=\mathrm{CH}_{2} \mathrm{NHSO}_{2} \mathrm{Ph}$
(23) $X=\mathrm{CO}_{2} \mathrm{But}$
(19) $X=\mathrm{CO}_{2} \mathrm{But}$
(20) $X=4$-Pyridyl
(21) $X=2$-Pyridyl

$$
\text { (24) } \begin{aligned}
\mathrm{a} ; \mathrm{R} & =5-\text { Nitro-2-pyridyl } \\
\mathrm{b} ; \mathrm{R} & =4,6 \text {-Dimethylpyrimidin-2-yl } \\
c_{;} \mathrm{R} & =4,6-\text { Dimethoxy-1,3,5-triazin-2-yl } \\
\text { d; } R & =3-p \text {-Bromophenyl-3-oxopropen-1-yl }
\end{aligned}
$$

could be isolated. However, the cyclised products (lla and b) were obtained in 22 and 68% yield by the reaction of N -allylbenzenesulphonamide with the betaines (13a and b), respectively: again structures are supported by

n.m.r. spectra (see below) and i.r. spectra $[v(\mathrm{C}=\mathrm{O})$ in Nujol at 1730 and $1720 \mathrm{~cm}^{-1}$]. The former reaction also afforded 20% of the uncyclised 6-endo-cycloadduct (18a). Surprisingly no cycloadducts were obtained from
attempted reaction of N-alkylbenzenesulphonamide with (16 c and d), nor from N-allylacetamide with (16a and b).

Acrylic Acid Derivatives.-Triethylammonium acrylate reacted with the pyridyl (13a) and pyrimidinyl (13b) betaines [but not with (16 c or d)] forming the tricyclic

(32) $X=\hat{N}-\bar{O}$
(33) $X=N$
products (35 a and b) in 44 and 52% yield, respectively. The i.r. spectra of both products showed the lactone $v(\mathrm{C}=\mathrm{O})$ at $1770-1780$ and the ketone $v(\mathrm{C}=\mathrm{O})$ at 1720

(34)
$\mathrm{cm}^{\mathbf{- 1}}$. The n.m.r. spectra are discussed below. Betaines (13 c and d) failed to react with acrylic acid.

(35) $a ; R=5$-Nitro-2-pyridyl
b; $R=4,6$-Dimethylpyrimidin-2-yl
t-Butyl acrylate reacted with betaine (13d) to give a mixture of endo- (19 d) and exo- (23 d) adducts. It is interesting that the acrylate esters gave both stereoisomers, whereas from acrylic acid only products of the endo-addition were isolated.

Vinylpyridines.-Betaine (13b) reacted normally with 4 -vinylpyridine to give the endo-adduct (20b); the corresponding adduct (2 lb) from 2 -vinylpyridine formed a cation which cyclised spontaneously to give (36). A low yield of the 6 -exo-adduct (37) was also isolated. Reaction of (36) with aqueous base regenerated (2lb). Quaternisation of adduct (2lb) with methyl iodide gave a quaternary salt (38) $(\stackrel{+}{\mathrm{N}}-\mathrm{Me}$ at $\delta \mathbf{4 . 4 9)}$.

Hydrogen-1 N.M.R. Spectra of Tricyclic Adducts (Table 2).-The usual olefinic protons $3-\mathrm{H}$ and $4-\mathrm{H}$ were absent from the ${ }^{1} \mathrm{H}$ n.m.r. spectra of these compounds.

(36)

(37)
(38)

The ${ }^{1} \mathrm{H}$ n.m.r. spectra and decoupling experiments of the tricyclic compound (10 b) are representative of this new class. Double irradiation at $5-\mathrm{H}$ collapsed the $4-\mathrm{H}$ multiplet at $\delta 4.70$ into a broad singlet, and simplified
the $6-\mathrm{H}$ multiplet at $\delta 2.94$. Protons $6-\mathrm{H}, 9-$ exo -H , and 9 -endo-H constitute an ABX spin system in which the coupling of 5.0 Hz between $6-\mathrm{H}$ and $9-$ exo -H correlates with a dihedral angle (ϕ) of 38° between $6-$ exo- H and $7-\mathrm{H}$. The coupling of 7.0 Hz between $4-\mathrm{H}$ and $5-\mathrm{H}$ corresponds to a dihedral angle ${ }^{10}$ of 20° [see (39)].

(39)

Other Cycloadditions at the 2,6-Positions of the Pyrimidinyl Betaine (13b).-Considerable further positive work is summarised in Table $3,{ }^{9}$ whereas attempted cycloadditions failed with the following dipolarophiles: phenyl isocyanate, phenyl isothiocyanate, benzalaniline, dicyclohexylcarbodi-imide, dihydropyran, allyl disulphide, and acrylamide.

The electron-rich dipolarophiles, ethyl vinyl ether, vinyl acetate, and N-vinylpyrrolidin-2-one yielded exclusively the 6 -endo-isomers (45), (46), and (47), respectively. In the case of isopropenyl acetate, it was not possible to determine the stereochemistry of the acetate group of the single isomer (50). As expected, the electron-deficient dipolarophiles acrylonitrile and methyl acrylate produced the 6 -endo-6-exo-mixtures of isomers (42-41) and (43-44) respectively. Both α -

Table 3
Preparation of cycloadducts

Cycloadduct (40)	Dipolarophile Methyl vinyl ketone	Solvent MeCN	$\begin{gathered} \text { Vol } \\ (\mathrm{ml}) \\ 20 \end{gathered}$	Reaction Yield time/d (\%)		$\begin{aligned} & \text { M.p. }\left({ }^{\circ} \mathrm{C}\right) \\ & 130-131 \end{aligned}$	Crystallisation solvent ${ }^{\circ}$ $\mathrm{Et}_{2} \mathrm{O}-$ EtOH	Found				Required			
						C		${ }_{\mathbf{H}}$	N	Formula	C	H	N		
				3	17			66.3	6.4	15.4	$\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{2}$	66.4	6.3	15.5	
(41)	Acrylonitrile	MeCN	15	4	44		206-207	EtOH	66.1	5.8	22.2	$\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{~N}_{4} \mathrm{O}$	66.1	5.5	22.0
(42)	Acrylonitrile	MeCN	15	4	8	216-217	EtOH	66.1	5.7	22.3	$\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{~N}_{4} \mathrm{O}$	66.1	5.5	22.0	
(43)	Methyl acrylate	MeCN	10	2	40	110-111	$\begin{aligned} & \mathrm{Et}_{2} \mathrm{O}- \\ & \mathrm{C}_{6} \mathrm{H}_{12} \end{aligned}$	63.0	6.2	14.4	$\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{3}$	62.7	5.9	14.6	
(44)	Methyl acrylate	MeCN	10	2	29	87-88	$\begin{aligned} & \mathbf{c}_{6}{ }_{2} \mathrm{E}_{12} \mathrm{O}- \\ & \mathrm{C}_{6} \mathrm{H}_{12} \end{aligned}$	62.9	6.3	14.5	$\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{3}$	62.7	5.9	14.6	
(45)	Ethyl vinyl ether ${ }^{\text {b }}$	1,2-dichloroethane	20	4	41	126-127	EtOH	65.9	7.0	15.5	$\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{2}$	66.0	7.0	15.4	
(46)	Vinyl acetate	EtOH	50	1	60	150-151	EtOH	62.8	6.1	14.5	$\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{3}$	62.7	5.9	14.6	
(47)	N-Vinylpyrrolidin-2one			3	4	180-181	$\mathrm{C}_{6} \mathrm{H}_{12}$	65.2	6.6	17.7	$\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{O}_{2}$	65.4	6.4	17.9	
(48)	α-Chloroacrylonitrile	MeCN	15	5	41	151-152	EtOH	58.0	4.2	19.7	$\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{ClN}_{4} \mathrm{O}$	58.2	4.5	19.4	
(49)	α-Methylacrylonitrile	MeCN	15	2	34	186-187	EtOH	67.5	6.1	20.6	$\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{O}$	67.2	6.0	20.9	
(50)	Isopropenyl acetate ${ }^{\text {b }}$	EtOH	15	2		92-93	$\begin{aligned} & \mathrm{Et}_{2} \mathrm{O}- \\ & \mathrm{EtOH} \end{aligned}$	63.4	6.4	13.6	$\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{3}$	63.8	6.3	14.0	
(51)	Diethyl maleate	MeCN	15	2	40	100-101	EtOH	61.3	6.2	11.0	$\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}_{5}$	61.1	6.1	11.3	
(52)	Diethyl maleate	MeCN	15	2	45	90-91	EtOH	61.0	6.2	11.1	$\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}_{5}$	61.1	6.1	11.3	
(53)	Cyclohexene ${ }^{\text {b }}$	EtOH	15	1	8	162-163	$\begin{aligned} & \mathrm{EtOH}^{\mathrm{E}}- \\ & \mathrm{Et}_{2} \mathrm{O} \\ & (1: 10) \end{aligned}$	71.8	7.5	14.4	$\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}$	72.1	7.4	14.8	
(54)	Ethyl phenylpropiolate	Chlorobenzene	20	7	15	155-156	EtOH ${ }^{\circ}$	64.6	4.7	10.5	$\mathrm{C}_{21} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{5}$	64.5	4.3	10.7	
(55)	Ethyl phenylpropiolate	Chlorobenzene	20	7	6	162-163	$\mathrm{EtOH}^{\text {c }}$	64.4	4.5	10.5	$\mathrm{C}_{21} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{5}$	64.5	4.3	10.7	

chloroacrylonitrile and α-methylacrylonitrile formed the single 6-C isomers (48) and (49) respectively of unknown stereochemistry. Methyl vinyl ketone yielded the single 6 -exo-isomer (40). The reaction of diethyl maleate with

(40) $X=$ COMe; $W=Z=Y=H$
(41) $X=C N ; W=Z=Y=H$
(42) $X=H ; Y=C N ; W=Z=H$
(43) $X=H ; Y=\mathrm{CO}_{2} \mathrm{Me} ; W=Z=H$
(44) $X=\mathrm{CO}_{2} \mathrm{Me} ; \mathrm{W}=\mathrm{Z}=\mathrm{Y}=\mathrm{H}$
(45) $X=H ; W=Z=H_{i} Y=O E t$
(46) $X=H ; W=Z=H ; Y=O C O M e$
(47)

(48) $X, Y=C l, C N ; W=Z=H$
(49) $X, Y=M e, C N ; W=Z=H$
(50) $X, Y=M e$, OCOMe; $W=Z=H$
(51) $X=H ; Y=\mathrm{CO}_{2} E t ; Z=\mathrm{CO}_{2} E t ; W=\mathrm{H}$
(52) $X=\mathrm{CO}_{2} \mathrm{Et} ; Z=\mathrm{H} ; Y=\mathrm{H}$; $. W=\mathrm{CO}_{2} \mathrm{Et}$

(54) and (55) $X, Y=\mathrm{Ph}, \mathrm{CO}_{2} \mathrm{Et}$
the pyrimidinyl betaine, generated in situ with triethylamine, yielded the two trans-isomers (51) and (52). FMO calculations ${ }^{9}$ predict the formation of the 6 endo, 7 -endo-bis(ethoxycarbonyl) adduct. Presumably base-catalysed isomerism ${ }^{11}$ of the initially formed kinetically controlled cis-product produced the less strained trans-isomers. Cyclohexene yielded a single 6,7 -endo-adduct (53), the formation of which attests to the high reactivity of the pyrimidinyl betaine. The acetylenic dipolarophile, ethyl phenyl propiolate readily produced the adducts (54) and (55), whose structures could not be differentiated by spectral means.
Adducts with Dienes.-Butadiene reacted across the 2,4-positions of betaines (13 a and b) to give the expected adducts (56 a and b); we have previously reported ${ }^{12}$ the analogous reaction with (13c). Bromination of (56a and b) occurred exclusively at the enamine group to yield (57a and b) as shown by the n.m.r. spectra (see below)
(Table 4). The pyrimidinyl adduct (56b) formed the oxime (58b), while the pyridyl adduct (56a) yielded the phenylhydrazone (59a). Reduction of (56b) with sodium borohydride gave the alcohol (60 b) and with PhMgBr the alcohol (61b). Catalytic reduction of the adduct (56b) gave the saturated ketone (62b) which formed an oxime (63b) and was reduced to the alcohol (64b).

(56) $X=O, Y=H$
(60) $Y=H$
(57) $X=0, Y=B r$
(61) $Y=P h$
(58) $X=N O H, Y=H$
(59) $X=$ NNHPh,$Y=H$

(62) $x=0$ (63) $X=\mathrm{NOH}$
a; $R=5-$ Nitro-2-pyridyl
b; $R=4,6$-Dimethylpyrimidin-2-yl

EXPERIMENTAL

The melting points were determined on a Reichert apparatus. Spectra were recorded with a Perkin-Elmer 257 grating infrared spectrophotometer, a Unicam ultraviolet spectrophotometer, a Hitachi-Perkin-Elmer RMU-6E mass spectrometer, and a Varian HA-100 n.m.r. spectrometer. Compounds were purified until they were observed as a single spot on t.l.c. (Kieselgel GF 254, type 60), and Kieselgel PF 254 was used for the preparative t.l.c. operations.

9-(5-Nitro-2-pyridyl)-endo-5-oxa-9-azatricyclo[5.2.1.0 ${ }^{4,8}$]-decan-2-one (10a).-The dimer (15a) ($1 \mathrm{~g}, 0.0046 \mathrm{~mol}$ betaine) in allyl alcohol (20 ml) was heated under reflux for 2 d and the reaction monitored by t.l.c. $\left(\mathrm{CHCl}_{3}\right)$. Excess of allyl alcohol was removed in vacuo. The residue was chromatographed over aluminium oxide (BDH Alumina neutral, 60 g , toluene), followed by preparative t.l.c. $\left(\mathrm{CHCl}_{3}\right)$. The decanone (10a) ($0.60 \mathrm{~g}, 48 \%$), was obtained as yellow prisms, m.p. $217-218{ }^{\circ} \mathrm{C}$ (1,2 -dichloroethane) (Found: C, 56.6; H, 4.8; N, 15.0. $\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}_{4}$ requires C, $56.7 ; \mathrm{H}, 4.7 ; \mathrm{N}, 15.3 \%$); $\nu_{\max }$ (Nujol) $1720 \mathrm{~cm}^{-1}$ (saturated CO); $\lambda_{\text {max. }}\left(\mathrm{CHCl}_{3}\right) 355 \mathrm{~nm}(\log \varepsilon 368) ; m / e$ 275 (58\%).

9-(4,6-Dimethylpyrimidin-2-yl)-endo-5-oxa-9-azatricyclo[5.2.1.0 ${ }^{4,8}$] decan-2-one (10 b).-A solution of the dimer (16 b) ($1 \mathrm{~g}, 0.005 \mathrm{~mol}$ betaine) in allyl alcohol (20 ml) was heated under reflux for 2 d . The excess of allyl alcohol was removed in vacuo. The residue was washed with light petroleum (b.p. $40-60^{\circ} \mathrm{C}$) (ca. 10 ml), and purified by t.l.c. on silica gel $\left(\mathrm{CHCl}_{3}\right)$ to give the title compound $(10 \mathrm{~b})(1.1 \mathrm{~g}$,

Table 4
${ }^{1} \mathrm{H}$ N.m.r. data (at 100 MHz) for butadiene adducts ${ }^{a}$

${ }^{a}$ In p.p.m. relative to SiMe_{4} as internal standard. ${ }^{b}$ In CDCl_{3}. ${ }^{c}$ In $\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}$. ${ }^{d}$ Overlapped with other signals. ${ }^{e}$ Triplet. ${ }^{f}$ Double triplet. ${ }^{\boldsymbol{b}}$ Multiplet. ${ }^{h}$ Singlet. 'Doublet. ${ }^{j}$ Double doublet. ${ }^{k}$ Quartet of doublets. ${ }^{i}$ Not measurable owing to signal overlap.
85%) as prisms, m.p. $120-121{ }^{\circ} \mathrm{C}(\mathrm{EtOH})$ (Found: C , $64.4 ; \mathrm{H}, 6.4 ; \mathrm{N}, 15.9 . \quad \mathrm{C}_{14} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{2}$ requires $\mathrm{C}, 64.9 ; \mathrm{H}$, 6.6 ; N, 16.2%); $\nu_{\text {max. }}$ (Nujol) $1725 \mathrm{~cm}^{-1}$ (saturated CO); $\lambda_{\text {max. }}\left(\mathrm{CHCl}_{3}\right) 293(\log \varepsilon 3.50)$ and $250 \mathrm{~nm}(4.10) ; m / e 259$ (74%). The reaction also gave 8 -(4,6-dimethylpyrimidin-2-yl)-6-exo-(hydroxymethyl)-8-azabicyclo[3.2.1]oct-3-en-2-one (22b) $(0.2 \mathrm{~g}, 14 \%)$ as a yellow gum which resisted recrystallisation (Found: C, 64.1; H, 7.0; N, 16.4. $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{2}$ requires $\mathrm{C}, 64.9$; $\mathrm{H}, 6.6 ; \mathrm{N}, 16.2 \%$); $\nu_{\text {max. }}$ (Nujol) 1680 $\mathrm{cm}^{-1}(\alpha \beta$-unsaturated ketone CO$) ; \lambda_{\text {max. }}\left(\mathrm{CHCl}_{3}\right) 251(\log \varepsilon$ 6.10) and $295 \mathrm{~nm}(5.49)$; $m / e 259(65 \%)$.

9-(4,6-Dimethoxy-s-triazin-2-yl)-endo-5-oxa-9-azatricyclo[5.2.1.0 ${ }^{4,8}$]decan-2-one (10 c).-A solution of the dimer (15 c) ($1 \mathrm{~g}, 0.0042 \mathrm{~mol}$ betaine) in allyl alcohol $(25 \mathrm{ml})$ was heated under reflux for 2 d and the reaction monitored by t.l.c. $\left(\mathrm{CHCl}_{3}\right)$. The reaction mixture was then evaporated in vacuo and washed with light petroleum (b.p. $40-60^{\circ} \mathrm{C}$) $(3 \times 5 \mathrm{ml})$. The residue was purified by preparative t.l.c.
$\left(\mathrm{CHCl}_{3}\right)$ to yield the title adduct (10c) ($122 \mathrm{mg}, 10 \%$) as needles, m.p. $120-121{ }^{\circ} \mathrm{C}$ (1,2-dichloroethane) (Found: C, $53.3 ; \mathrm{H}, 5.3 ; \mathrm{N}, 19.0 . \quad \mathrm{C}_{13} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{O}_{4}$ requires $\mathrm{C}, 53.4 ; \mathrm{H}$, $5.5 ; \mathrm{N}, 19.2 \%$) ; $\nu_{\max .}$ (Nujol) 1730 (saturated CO), 1590 , 1570 , and $1550 \mathrm{~cm}^{-1}(\mathrm{C}-\mathrm{N})$; $\lambda_{\text {max. }}\left(\mathrm{CHCl}_{3}\right) 247 \mathrm{~nm}(\log \varepsilon$ 3.88); m/e 292 (43%).

5-Benzenesulphonyl-9-(5-nitro-2-pyridyl)-5,9-diazatricyclo[5.2.1.0 $0^{4,8}$]decan-2-one (11a).-A solution of the dimer (15a) ($0.5 \mathrm{~g}, 0.0023 \mathrm{~mol}$ betaine) and allylbenzenesulphonamide $(2.8 \mathrm{~g}, 0.0142 \mathrm{~mol})$ in toluene (5 ml) was heated under reflux for 2 d and the reaction monitored by t.l.c. $\left(\mathrm{CHCl}_{3}\right)$. The solvent was evaporated off in vacuo, and the brown residue, after treatment with light petroleum (b.p. 40$\left.60^{\circ} \mathrm{C}\right)(15 \mathrm{ml})$, was purified by preparative t.l.c. $\left(\mathrm{CHCl}_{3}\right)$ to give the pure compound (11a) ($0.210 \mathrm{~g}, 22 \%$) as yellow prisms, m.p. $198-199{ }^{\circ} \mathrm{C}$ (1,2-dichloroethane) (Found: C, $54.8 ; \mathrm{H}, 4.4 ; \mathrm{N}, 13.4 ; \mathrm{S}, 7.6 . \quad \mathrm{C}_{19} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{O}_{5} \mathrm{~S}$ requires C , $55.1 ; \mathrm{H}, 4.3$; N, 13.5 ; S, 7.7%); $\mathrm{v}_{\max }$ (Nujol) $1730 \mathrm{~cm}^{-1}$
(saturated CO) ; $\lambda_{\text {max. }}\left(\mathrm{CHCl}_{3}\right) 245(\log \varepsilon 3.74)$ and 352 nm (4.20) ; m/e $414(10 \%)$. The reaction also gave 6 -endo-(N -benzenesulphonylaminomethyl)-8-(5-nitro-2-pyridyl)-8-aza-bicyclo[3.2.1]oct-3-en-2-one (18a) ($0.19 \mathrm{~g}, 20 \%$) as yellow prisms, m.p. $207-208{ }^{\circ} \mathrm{C}$ (dichloroethane) (Found: C, 55.3; $\mathrm{H}, 4.5 ; \mathrm{N}, 13.5 ; \mathrm{S}, 7.7 . \mathrm{C}_{19} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{O}_{5} \mathrm{~S}$ requires C , 55.1 ; $\mathrm{H}, 4.3$; N, 13.5; S, 7.7%); $\nu_{\text {max. }}$ (Nujol) $1675 \mathrm{~cm}^{-1}$ (unsaturated CO); $\lambda_{\text {max. }}\left(\mathrm{CHCl}_{3}\right) 245(\log \varepsilon 3.65)$ and 348 nm (4.04) ; m/e 414 (38\%).

5-Benzenesulphonyl-9-(4,6-dimethylpyrimidin-2-yl)-5,9-diazatricyclo $\left[5.2 .1 .0^{4,8}\right]$ decan-2-one (11b).-A solution of the dimer (16 b) ($0.5 \mathrm{~g}, 0.0024 \mathrm{~mol}$ betaine) and allylbenzenesulphonamide ($3.7 \mathrm{~g}, 0.0187 \mathrm{~mol}$) was refluxed in toluene $(5 \mathrm{ml})$ for 2 d with monitoring by t.l.c. $\left(\mathrm{CHCl}_{3}\right)$. The toluene was removed in vacuo, and the semi-solid residue was treated with light petroleum (b.p. $\left.40-60^{\circ} \mathrm{C}\right)(20 \mathrm{ml})$ to remove the excess of dipolarophile. The crude product was purified by preparative t.l.c. $\left(\mathrm{CHCl}_{3}\right)$ to yield compound (11b) ($0.65 \mathrm{~g}, 68 \%$) as prisms, m.p. $212-213{ }^{\circ} \mathrm{C}$ (1,2 -dichloroethane) (Found: C, 60.0; H, 5.9; N, 14.2; S, 8.2. $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{~N}_{4} \mathrm{O}_{3} \mathrm{~S}$ requires $\mathrm{C}, 60.3 ; \mathrm{H}, 5.5 ; \mathrm{N}, 14.1 ; \mathrm{S}, 8.0 \%$); $\nu_{\text {max. }}$ (Nujol) $1720 \mathrm{~cm}^{-1}$ (saturated CO); $\lambda_{\text {max. }}\left(\mathrm{CHCl}_{3}\right) 248$ ($\log \varepsilon 4.21$) and $290 \mathrm{~nm}(3.66)$; $m / e 398$ (25%).

3-Benzylideno-9-(4,6-dimethylpyrimidin-2-yl)-5-oxa-9-azatricyclo $\left[5.2 .1 .0^{4,8}\right.$]decan-2-one (12b).—A solution of benzaldehyde ($0.3 \mathrm{~g}, 0.0028 \mathrm{~mol}$) in $\mathrm{EtOH}(5 \mathrm{ml})$ was added to a solution of compound (10 b) ($0.5 \mathrm{~g}, 0.0019 \mathrm{~mol}$) and KOH ($0.4 \mathrm{~g}, 0.007 \mathrm{~mol}$) in a mixture of EtOH (20 ml) and $\mathrm{H}_{2} \mathrm{O}$ $(5 \mathrm{ml})$. After stirring at room temperature for 2 h , the yellow precipitate was filtered off and purified by preparative t.l.c. $\left(\mathrm{CHCl}_{3}\right)$ to give the derivative (12b) $(0.35 \mathrm{~g}$, 53%), as yellow prisms, n.p. $135-136{ }^{\circ} \mathrm{C}\left(\mathrm{Et}_{2} \mathrm{O}\right)$ (Found: $\mathrm{C}, 72.3 ; \mathrm{H}, 6.1 ; \mathrm{N}, 12.0 . \quad \mathrm{C}_{21} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}_{2}$ requires $\mathrm{C}, 72.6$; $\mathrm{H}, 6.1 ; \mathrm{N}, 12.1 \%$); $\nu_{\text {max. }}$ (Nujol) $1695 \mathrm{~cm}^{-1}$ (unsaturated $\mathrm{CO})$; $\lambda_{\text {max. }}\left(\mathrm{CHCl}_{3}\right) 250(\log \varepsilon 4.21)$ and $295 \mathrm{~nm}(4.25)$; $m / e 347$ (100%).

6-endo-(Acetoxymethyl)-8-(5-nitro-2-pyridyl)-8-azabicyclo-[3.2.1]oct-3-en-2-one (17a).-The dimer (15a) (1 g, 0.0023 mol) in allyl acetate (25 ml) was heated under reflux for 2 d and the reaction monitored by t.l.c. $\left(\mathrm{CHCl}_{3}\right)$. Excess of dipolarophile was removed in vacuo, and the residue purified by preparative t.l.c. $\left[\mathrm{EtOAc}-\mathrm{CHCl}_{3}(\mathbf{1}: 1)\right]$. The title compound (17 a) ($0.394 \mathrm{~g}, 27 \%$) was isolated as yellow prisms, m.p. $145-147{ }^{\circ} \mathrm{C}$ [EtOH-cyclohexane (50:1)] (Found: C, $56.6 ; \mathrm{H}, 4.6 ; \mathrm{N}, 13.3 . \mathrm{C}_{15} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}_{5}$ requires C, $56.8 ; \mathrm{H}, 4.7$; N, 13.2%); $\nu_{\text {max }}$ (Nujol) 1740 (ester CO) and $1670 \mathrm{~cm}^{-1}$ (unsaturated CO); $\lambda_{\max .}\left(\mathrm{CHCl}_{3}\right) 350 \mathrm{~nm}$ ($\log \varepsilon 3.92$); $m / e 317$ (46%).
t-Butyl 8-(3-p-Bromophenyl-3-oxopropen-1-yl)-2-oxo-8-aza-bicyclo[3.2.1]oct-3-ene-6-exo-carboxylate (23d) and -6-endocarboxylate (19d).-A solution of the betaine (13d) $(0.5 \mathrm{~g}$, 0.0016 mol) and t-butyl acrylate (3 ml) in MeCN (20 ml) was refluxed gently for 3 d . The reaction was monitored by t.l.c. [EtOAc-light petroleum ($1: 1$)]. The mixture was concentrated in vacuo and the pure isomers were separated by preparative t.l.c. [EtOAc-light petroleum (b.p. 40$\left.\left.60^{\circ} \mathrm{C}\right)(1: 1)\right]$. The endo-isomer (19d) ($0.11 \mathrm{~g}, 16 \%$) was isolated as pinkish prisms, m.p. $190-191{ }^{\circ} \mathrm{C}\left(\mathrm{Et}_{2} \mathrm{O}\right)$ (Found: C, $58.7 ; \mathrm{H}, 5.4 ; \mathrm{N}, 3.1 ; \mathrm{Br}, 18.2 . \quad \mathrm{C}_{21} \mathrm{H}_{22} \mathrm{BrNO}_{4}$ requires C, 58.3 ; $\mathrm{H}, 5.1 ; \mathrm{N}, 3.2$; $\mathrm{Br}, 18.5 \%$); $\nu_{\text {max. }}$ (Nujol) 1730 (ester CO) and $1690 \mathrm{~cm}^{-1}$ (unsaturated CO); $\lambda_{\text {max. }}\left(\mathrm{CHCl}_{3}\right)$ $265(\log \varepsilon 4.27)$ and $334 \mathrm{~nm}(4.43)$; $m / e 432(11 \%)$. The exo-isomer (23d) ($115 \mathrm{mg}, 17 \%$) was isolated as pinkish prisms, m.p. $165-166{ }^{\circ} \mathrm{C}\left(\mathrm{Et}_{2} \mathrm{O}\right)$ (Found: C, 58.6; H, 5.4; $\mathrm{N}, 3.2 ; \mathrm{Br}, 18.6 \%$); $\nu_{\max }$ (Nujol) 1720 (ester CO) and
$1690 \mathrm{~cm}^{-1}$ (unsaturated CO); $\lambda_{\text {max. }}\left(\mathrm{CHCl}_{3}\right) 265(\log \varepsilon 4.23)$ and $334 \mathrm{~nm}(4.41)$; $m / e 432(8 \%)$.

8-(4,6-Dimethylpyrimidin-2-yl)-6-endo-(4-pyridyl)-8-aza-bicyclo[3.2.1]oct-3-en-2-one (20b).—A solution of the salt (14b) ($1 \mathrm{~g}, 0.0042 \mathrm{~mol}$), hydroquinone (200 mg), 4 -vinylpyridine (5 ml), and $\mathrm{Et}_{3} \mathrm{~N}(4 \mathrm{ml})$ in $\mathrm{MeCN}(15 \mathrm{ml})$ was heated under reflux at $100{ }^{\circ} \mathrm{C}$ for 4 d . The mixture was concentrated in vacuo and filtered to remove precipitated $\mathrm{Et}_{3} \mathrm{~N} \cdot \mathrm{HCl}$. The filtrate was evaporated to dryness in vacuo and the residue purified by preparative t.l.c. $\left(\mathrm{CHCl}_{3}\right)$. The cycloadduct (20 b) ($0.15 \mathrm{~g}, 12 \%$) was isolated as prisms, m.p. $150{ }^{\circ} \mathrm{C}[\mathrm{EtOH}-\mathrm{cyclohexane}(1: 1)]$ (Found: C, 70.4; H, $6.0 ; \mathrm{N}, 18.2 . \quad \mathrm{C}_{18} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{O}$ requires $\mathrm{C}, 70.6 ; \mathrm{H}, 5.8 ; \mathrm{N}$, 18.3%) ; $\nu_{\text {max. }}$ (Nujol) $1690 \mathrm{~cm}^{-1}$ (unsaturated CO); $\lambda_{\text {max. }}$ $\left(\mathrm{CHCl}_{3}\right) 254(\log \varepsilon 4.20)$ and $290 \mathrm{~nm}(3.59) ; m / e 306(47 \%)$.

8-(4,6-Dimethylpyrimidin-2-yl)-6-endo-(2-pyridyl)-8-aza-bicyclo[3.2.1]oct-3-en-2-one (21b).-A mixture of the cycloadduct (36) ($100 \mathrm{mg}, 0.0002 \mathrm{~mol}$) in $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{ml})$ and KOH solution ($200 \mathrm{mg}, 0.0035 \mathrm{~mol}$ in 5 ml water) was stirred at room temperature for 30 min . The precipitate was collected and washed with $\mathrm{H}_{2} \mathrm{O}$ to give the product (21b) ($55 \mathrm{mg}, 90 \%$) as prisms, m.p. $157-158{ }^{\circ} \mathrm{C}\left[\mathrm{EtOH}-\mathrm{Et}_{2} \mathrm{O}\right.$ (1:10)] (Found: C, 70.3; H, 6.0; N, 18.0. $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{O}$ requires $\mathrm{C}, 70.6 ; \mathrm{H}, 5.9$; $\mathrm{N}, 18.3 \%$); $\nu_{\text {max. }}$ (Nujol) 1685 cm^{-1} (unsaturated CO); $\lambda_{\text {max. }}\left(\mathrm{CHCl}_{3}\right) 256(\log \varepsilon 4.20)$ and $293 \mathrm{~nm}(3.56)$; $m / e 306$ (55%).

Quaternization of Compound (21b).-A solution of (21b) ($0.7 \mathrm{~g}, 0.0022 \mathrm{~mol}$) in EtOAc (50 ml) and MeI (25 ml) was refluxed for 7 d and the reaction monitored by t.l.c. $\left(\mathrm{CHCl}_{3}\right)$. When the starting material was consumed, the reaction mixture was evaporated in vacuo to give the methiodide (38) $(0.6 \mathrm{~g}, 60 \%)$ as yellowish prisms, m.p. $172-173{ }^{\circ} \mathrm{C}(\mathrm{MeCN})$ (Found: C, 50.6; H, 4.8; N, 12.7; I, 28.2. $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{IN}_{4} \mathrm{O}$ requires $\mathrm{C}, 50.9 ; \mathrm{H}, 4.7 ; \mathrm{N}, 12.5 ; \mathrm{I}, 28.3 \%$); $\nu_{\text {max. }}$ (Nujol) $1700 \mathrm{~cm}^{-1}$ (saturated CO) ; $\lambda_{\text {max. }}\left(\mathrm{CHCl}_{3}\right) 248 \mathrm{~nm}(\log \varepsilon$ 4.31).

8-Allyloxy-3,11-bis(4,6-dimethoxy-s-triazin-2-yl)-3,11-diazatricyclo $\left[5.3 .1 .1^{2,6}\right]$ dodecan-4-ene-10,12-dione (24c). $-\mathrm{Et}_{3} \mathrm{~N}$ (1 ml) was added dropwise during 20 min to a well-stirred solution of salt (13 c) ($1 \mathrm{~g}, 0.0037 \mathrm{~mol}$) and allyl alcohol (1.6 $\mathrm{g}, 0.0275 \mathrm{~mol}$) in 1,2-dichloroethane (20 ml) at room temperature. After 2 h , the violet colour faded. The precipitated $\mathrm{Et}_{3} \mathrm{~N} \cdot \mathrm{HCl}$ was filtered off and the filtrate was concentrated in vacuo. The residue was purified by preparative t.l.c. [on silica gel $\left(\mathrm{CHCl}_{3}\right)$] to yield the cycloadduct (24 c) ($0.486 \mathrm{~g}, 25 \%$), as prisms, m.p. $185-186{ }^{\circ} \mathrm{C}$ [$\mathrm{CH}_{2} \mathrm{Cl}_{2}-1,2$-dichloroethane ($1: 2$)] (Found: C, $52.0 ; \mathrm{H}$, $4.9 ; \mathrm{N}, 21.2 . \mathrm{C}_{23} \mathrm{H}_{26} \mathrm{~N}_{8} \mathrm{O}_{7}$ requires $\mathrm{C}, 52.5 ; \mathrm{H}, 4.9 ; \mathrm{N}$, 21.3%) ; $\nu_{\text {max. }}$ (Nujol) 1730 (saturated CO) and $1550 \mathrm{~cm}^{-1}$ $(\mathrm{C}-\mathrm{N}) ; \lambda_{\text {max. }}\left(\mathrm{CHCl}_{3}\right) 270 \mathrm{~nm}(\log \varepsilon 4.2) ; m / e 526$ (12%).

9-(4,6-Dimethylpyrimidin-2-yl)-5-oxa-9-azatricyclo-
[5.2.1.0 ${ }^{4,8}$]decan-2-one phenylhydrazone (25).-Phenylhydrazine hydrochloride ($0.7 \mathrm{~g}, 0.005 \mathrm{~mol}$) and $\mathrm{NaOAc}(1 \mathrm{~g}$, $0.0012 \mathrm{~mol})$ in $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{ml})$ were added to a well-stirred solution of the cycloadduct (10 b) ($0.4 \mathrm{~g}, 0.0015 \mathrm{~mol}$) in water $(10 \mathrm{ml})$. After 2 h , the reaction mixture was diluted with $\mathrm{H}_{2} \mathrm{O}(50 \mathrm{ml})$ and the precipitate collected by filtration. The crude product was washed with $\mathrm{H}_{2} \mathrm{O}$ and crystallised from EtOH to give the phenylhydrazone (25) ($0.5 \mathrm{~g}, 96 \%$) as yellow prisms, m.p. $227-228{ }^{\circ} \mathrm{C}$ (Found: C, 68.4; H, 6.7; $\mathrm{N}, 19.7 . \quad \mathrm{C}_{20} \mathrm{H}_{23} \mathrm{~N}_{5} \mathrm{O}$ requires $\mathrm{C}, 68.7 ; \mathrm{H}, 6.6 ; \mathrm{N}, 20.0 \%$); $\nu_{\text {max. }}$ (Nujol) $3270(\mathrm{NH})$ and $1600 \mathrm{~cm}^{-1}(\mathrm{C}-\mathrm{N})$; $\lambda_{\text {max. }}\left(\mathrm{CHCl}_{3}\right)$ $348 \mathrm{~nm}(\log \varepsilon 4.02) ; m / e 349$ (100%).

9-(4,6-Dimethylpyrimidin-2-yl)-2-morpholino-5-oxa-9-azatricyclo $\left[5.2 .1 .0^{4,8}\right]$ decan-2-ene (26).-A mixture of the cyclo-
adduct (10 b) ($1 \mathrm{~g}, 0.0038 \mathrm{~mol}$), toluene- p-sulphonic acid $(0.65 \mathrm{~g}, 0.003 \mathrm{~mol})$, morpholine ($3.5 \mathrm{~g}, 0.04 \mathrm{~mol}$), and molecular sieves ($4 \AA, 4 \mathrm{~g}$) in toluene (15 ml) was heated under reflux at $100{ }^{\circ} \mathrm{C}$. The reaction was monitored by t.l.c. $\left(\mathrm{CHCl}_{3}\right)$. When all the starting cycloadduct was consumed, the reaction was cooled to room temperature and filtered. The filtrate was evaporated to dryness and the residue was purified by preparative t.l.c. $\left(\mathrm{CHCl}_{3}\right)$ to give the adduct (26) ($200 \mathrm{mg}, 16 \%$) as prisms, m.p. $132-133{ }^{\circ} \mathrm{C}$ (cyclohexane) (Found: C, 65.8; H, 7.5; N, 16.8. $\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{~N}_{4} \mathrm{O}_{2}$ requires $\mathrm{C}, 65.9 ; \mathrm{H}, 7.3 ; \mathrm{N}, 16.8 \%$); ${ }^{\text {max. }}$ (Nujol) $1620 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{C}-\mathrm{N})$; $\lambda_{\text {max. }}\left(\mathrm{CHCl}_{3}\right) 250 \mathrm{~nm}(\log \varepsilon$ 4.02) ; m/e 328 (100%).

9-(4,6-Dimethylpyrimidin-2-yl)-5-oxa-9-azatricyclo[5.2.1.0 ${ }^{4,8}$]decan-2-ol (27).-A solution of the cycloadduct (10b) ($0.5 \mathrm{~g}, 0.0019 \mathrm{~mol}$) in $\mathrm{MeOH}(25 \mathrm{ml})$ was treated with a solution of $\mathrm{NaBH}_{4}(50 \mathrm{mg}$, in 2 ml of $0.2 \mathrm{~N} \mathrm{NaOH)} \mathrm{and}$ stirred at room temperature for 1 h . The mixture was evaporated to dryness and extracted with $\mathrm{Et}_{2} \mathrm{O}(4 \times 10 \mathrm{ml})$. The extract was purified by preparative t.l.c. $\left(\mathrm{CHCl}_{3}\right)$ to yield the alcohol (27) (0.4 g , 81%) as prisms, m.p. $90-91{ }^{\circ} \mathrm{C}$ ($\mathrm{Et}_{2} \mathrm{O}$) (Found: C, 64.2; H, 7.6; N, 15.9. $\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{2}$ requires C, 64.4; H, 7.3; N, 16.1\%); $\nu_{\text {max. }}$ (Nujol) 3380 $\mathrm{cm}^{-1}(\mathrm{OH})$; $\lambda_{\text {max. }}\left(\mathrm{CHCl}_{3}\right) 256(\log \varepsilon 4.08)$ and $306 \mathrm{~nm}(3.52)$; $m / e 261$ (57\%).

9-(5-Bromo-4,6-dimethylpyrimidin-2-yl)-5-oxa-9-azatricyclo[5.2.1.0 $\left.0^{4,8}\right]$ decan-2-one (28).-A solution of bromine ($182 \mathrm{mg}, 0.0011 \mathrm{~mol}$) in $\mathrm{AcOH}(5 \mathrm{ml})$ was added dropwise to a well-stirred solution of compound (10b) ($0.45 \mathrm{~g}, 0.0017$ mol) in $\mathrm{AcOH}(7.5 \mathrm{ml})$. After 1 h the solution was basified with $\mathrm{NH}_{4} \mathrm{OH}$ and extracted with CHCl_{3}. The combined extracts when concentrated in vacuo gave the crude product which was purified by preparative t.l.c. $\left(\mathrm{CHCl}_{3}\right)$. The desired product (28) ($0.3 \mathrm{~g}, 76 \%$) was obtained as prisms, m.p. $95-96{ }^{\circ} \mathrm{C}$ [EtOH-Et ${ }_{2} \mathrm{O}$ (1:10)] (Found: C, 49.7; $\mathrm{H}, 4.9$; $\mathrm{N}, 12.3 ; \mathrm{Br}, 23.5 . \mathrm{C}_{14} \mathrm{H}_{16} \mathrm{BrN}_{3} \mathrm{O}_{2}$ requires C , 49.7 ; $\mathrm{H}, 4.7$; N, 12.4 ; $\mathrm{Br}, 23.6 \%$); $\nu_{\text {max. }}$ (Nujol) 1725 cm^{-1} (saturated CO); $\lambda_{\text {max. }}\left(\mathrm{CHCl}_{3}\right) 257 \mathrm{~nm}(\log \varepsilon 4.38)$; $m / e 337$ (22%) and 339 (22%).

9-(5-Bromo-4,6-dimethylpyrimidin-2-yl)-3,3-dibromo-5-
oxa-9-azatricyclo[5.2.1.04,8]decan-2-one (29).—A solution of bromine ($0.23 \mathrm{~g}, 0.0014 \mathrm{~mol}$) in pyridine (5 ml) was added dropwise during 1 h to a well-stirred solution of the cycloadduct (10 b) ($0.5 \mathrm{~g}, 0.0019 \mathrm{~mol}$) in pyridine (10 ml). The reaction mixture was evaporated to dryness in vacuo at $100{ }^{\circ} \mathrm{C}$, and the residue obtained was treated with light petroleum (25 ml) (b.p. $40-60^{\circ} \mathrm{C}$) to remove unreacted bromine. The crude mixture was purified by preparative t.l.c. $\left(\mathrm{CHCl}_{3}\right)$ to give the bromo-derivative (29) ($0.35 \mathrm{~g}, 37 \%$) as prisms, m.p. $206-207{ }^{\circ} \mathrm{C}$ (1,2-dichloroethane) (Found: $\mathrm{C}, 33.7 ; \mathrm{H}, 3.0 ; \mathrm{N}, 8.3$; $\mathrm{Br}, 48.4 . \quad \mathrm{C}_{14} \mathrm{H}_{14} \mathrm{Br}_{3} \mathrm{~N}_{3} \mathrm{O}_{2}$ requires C, 33.9; H, 2.8; N, 8.5; Br, 48.4\%); $\nu_{\text {max }}$ (Nujol) 1740 cm^{-1} (saturated CO); $\lambda_{\text {max. }}\left(\mathrm{CHCl}_{3}\right) 253 \mathrm{~nm}$ ($\log \varepsilon 4.22$).

3,3-Dibromo-9-(5-nitro-2-pyridyl)-5-oxa-9-azatricyclo[5.2.1.04, 8]decan-2-one (30) and 9-(3-Bromo-5-nitro-2-pyridyl)-3,3-dibromo-5-oxa-9-azatricyclo[5.2.1.04,8]decan-2-one (31).Bromine was added dropwise to a solution of the cycloadduct (10 a) ($0.6 \mathrm{~g}, 0.0021 \mathrm{~mol}$) in pyridine (40 ml) until the colour of bromine remained. After stirring at room temperature for 1 h , pyridine was removed in vacuo at $100^{\circ} \mathrm{C}$, and the residue obtained was extracted with portions of 1,2 -dichloroethane $(2 \times 10 \mathrm{ml})$. The crude extracts were purified by preparative t.l.c. $\left(\mathrm{CHCl}_{3}\right)$ to give the dibromo-derivative (30) ($0.45 \mathrm{~g}, 51 \%$), yellow prisms, m.p. 225-226 ${ }^{\circ} \mathrm{C}$ (1,2-dichloroethane) (Found: C, 34.1;
$\mathrm{H}, 2.7$; $\mathrm{N}, 9.8$; $\mathrm{Br}, 38.0 . \quad \mathrm{C}_{12} \mathrm{H}_{11} \mathrm{Br}_{2} \mathrm{~N}_{3} \mathrm{O}_{4}$ requires $\mathrm{C}, 34.2$; $\mathrm{H}, 2.6 ; \mathrm{N}, 10.0 ; \mathrm{Br}, 38.0 \%$); $\nu_{\text {max. }}$. (Nujol) $1750 \mathrm{~cm}^{-1}$ (saturated CO); $\lambda_{\text {max. }}\left(\mathrm{CHCl}_{3}\right) 355(\log \varepsilon 4.31) \mathrm{nm}$. The compound (31) ($0.117 \mathrm{~g}, 11 \%$) was recrystallised from 1,2dichloroethane as yellow prisms, m.p. $215-216{ }^{\circ} \mathrm{C}$ (Found: C, 28.7; H, 2.3; N, 8.3; $\mathrm{Br}, 47.9 . \quad \mathrm{C}_{12} \mathrm{H}_{10} \mathrm{Br}_{3} \mathrm{~N}_{3} \mathrm{O}_{4}$ requires C, 28.8; H, 2.0; N, 8.4; Br, 48.0\%); $\nu_{\text {max }}$ (Nujol) 1740 cm^{-1} (saturated CO); $\lambda_{\text {max. }}\left(\mathrm{CHCl}_{3}\right) 355 \mathrm{~nm}(\log \varepsilon 4.11)$.

Preparation of Compound (32).-A solution of the cycloadduct (10 b) ($0.5 \mathrm{~g}, 0.0019 \mathrm{~mol}$), benzofuroxan (0.6 g , 0.0045 mol), and $\mathrm{KOH}(0.56 \mathrm{~g}, 0.01 \mathrm{~mol})$ in $\mathrm{EtOH}(40 \mathrm{ml})$ was heated under reflux. When all the starting cycloadduct had been consumed (t.l.c., CHCl_{3}), the solution was cooled and filtered. The filtrate was concentrated in vacuo and the residue was purified by preparative t.l.c. $\left(\mathrm{CHCl}_{3}\right)$. The pure compound (32) ($150 \mathrm{mg}, 20 \%$) was obtained as orange prisms, m.p. $215-216{ }^{\circ} \mathrm{C}$ [$\mathrm{EtOH}-\mathrm{Et}_{2} \mathrm{O}$ (1:1)] (Found: C, 63.5; H, 5.3; N, 18.3. $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{~N}_{5} \mathrm{O}_{3}$ requires C, 63.7; H, 5.0; N, 18.6\%); $\nu_{\text {max. }}$ (Nujol) 1570 and $1370 \mathrm{~cm}^{-1}(\mathrm{~N}-\mathrm{O})$; $\lambda_{\text {max. }}\left(\mathrm{CHCl}_{3}\right) 248(\log \varepsilon 3.82)$ and 270 nm (3.87) ; m/e 377 (8%).

Preparation of Compound (33).-Potassium borohydride $(0.5 \mathrm{~g}, 0.006 \mathrm{~mol})$ was added in small portions to a stirred solution of compound (32) ($50 \mathrm{mg}, 0.0001 \mathrm{~mol}$) and KOH (5 ml of 10% solution) in $\mathrm{MeOH}(10 \mathrm{ml}$). After 1 h , the reaction mixture was gently refluxed until no more colour fading was observed (orange to pale yellow). The reaction mixture was neutralised (glacial AcOH) and evaporated to dryness in vacuo. The residue was diluted with $\mathrm{H}_{2} \mathrm{O}$ and extracted with $\mathrm{CHCl}_{3}(2 \times 10 \mathrm{ml})$. The CHCl_{3} extracts were purified by preparative t.l.c. $\left(\mathrm{CHCl}_{3}\right)$ to give compound (33) ($25 \mathrm{mg}, 69 \%$) as yellow prisms, m.p. $215-216{ }^{\circ} \mathrm{C}$ ($\mathrm{Et} \mathrm{t}_{2} \mathrm{O}$) (Found: C, 66.6; H, 5.3; N, 19.6. $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{~N}_{5} \mathrm{O}_{2}$ requires $\mathrm{C}, 66.5 ; \mathrm{H}, 5.3 ; \mathrm{N}, 19.4 \%$); $\nu_{\max .}$ (Nujol) 1580 and $1360(\mathrm{~N}-\mathrm{O}) \mathrm{cm}^{-1}$; $\lambda_{\text {max. }}\left(\mathrm{CHCl}_{3}\right) 253 \mathrm{~nm}(\log \varepsilon 4.39)$; $m / e 361(68 \%)$.

10-Allylamino-3,11-bis(4,6-dimethylpyrimidin-2-yl)-3,11diazatricyclo $\left[5.3 .1 .1^{2,6}\right]$ dodecan-4-ene-8,12-dione (34).—A solution of the dimer (16 b) $(0.5 \mathrm{~g}, 0.0012 \mathrm{~mol})$, allylamine $(15 \mathrm{ml})$, and toluene (10 ml) was heated under reflux at $100^{\circ} \mathrm{C}$ for 2 d . The course of the reaction was monitored by t.l.c. (EtOAc). The reaction mixture was evaporated to dryness in vacuo and the residue purified by preparative t.l.c. on silica gel $\left[\mathrm{EtOAc}-\mathrm{CHCl}_{3}(1: 1)\right]$. The title compound (34) ($0.247 \mathrm{~g}, 22 \%$), was isolated as yellowish prisms, m.p. $150{ }^{\circ} \mathrm{C}\left[\mathrm{EtOH}-\mathrm{Et}_{2} \mathrm{O}(2: 1)\right]$ (Found: C, 65.5; H, 6.5; N, 21.0. $\mathrm{C}_{25} \mathrm{H}_{29} \mathrm{~N}_{7} \mathrm{O}_{2}$ requires $\mathrm{C}, 65.4 ; \mathrm{H}, 6.3 ; \mathrm{N}, 21.4 \%$); $\nu_{\text {max. }}$ (Nujol) 1720 (saturated CO) and $1640 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{C}-\mathrm{N})$; $\lambda_{\text {max. }}\left(\mathrm{CHCl}_{3}\right) 250(\log \varepsilon 4.33)$ and $278 \mathrm{~nm}(4.29) ; m / e 459$ (29\%).

9-(5-Nitro-2-pyridyl)-5-oxa-9-azatricyclo[5.2.1.0 $\left.0^{4,8}\right]$ decane-2,6-dione (35a).—A solution of the dimer (15a) (0.8 g , 0.0038 mol betaine) and triethylammonium acrylate (2 g) in $\mathrm{MeCN}-\mathrm{H}_{2} \mathrm{O}(1: 1)$ was refluxed for 7 d . The precipitate was collected and washed several times with $\mathrm{MeCN}(4 \times 5$ ml). The dark brown solid was recrystallised from MeCN $\mathrm{H}_{2} \mathrm{O}$ to give compound (35a) as brown prisms ($0.48 \mathrm{~g}, 44 \%$), m.p. 265-266 ${ }^{\circ} \mathrm{C}$ (Found: C, 53.7; H, 3.6; N, 14.3 . $\mathrm{C}_{13} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{O}_{5}$ requires $\mathrm{C}, 54.0 ; \mathrm{H}, 3.8 ; \mathrm{N}, 14.5 \%$); $\nu_{\text {max. }}$ (Nujol) 1770 (lactone CO) and $1720 \mathrm{~cm}^{-1}$ (saturated CO); $m / e 289$ (15%).

9-(4,6-Dimethylpyrimidin-2-yl)-5-oxa-9-azatricyclo-
[5.2.1.0 ${ }^{4,8}$]decane-2,6-dione (35b).—A solution of the salt (13b) ($1 \mathrm{~g}, 0.0042 \mathrm{~mol}$), triethylammonium acrylate (2 g), and $\mathrm{Et}_{3} \mathrm{~N}(10 \mathrm{ml})$ in $\mathrm{MeCN}(15 \mathrm{ml})$ was heated under reflux
for 2 d . The course of the reaction was followed by t.l.c. $\left(\mathrm{CHCl}_{3}\right)$. The reaction mixture was evaporated in vacuo and the residue treated with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The precipitate was discarded and the filtrate was concentrated in vacuo. The concentrate was purified by preparative t.l.c. $\left(\mathrm{CHCl}_{3}\right)$ to give the adduct (35 b) ($0.6 \mathrm{~g}, 52 \%$) as prisms, m.p. 136 $137{ }^{\circ} \mathrm{C} \quad\left(\mathrm{Et}_{2} \mathrm{O}\right)$ (Found: $\mathrm{C}, 61.4 ; \mathrm{H}, 5.5 ; \mathrm{N}, 15.0$. $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}_{3}$ requires $\mathrm{C}, 61.5 ; \mathrm{H}, 5.5 ; \mathrm{N}, 15.4 \%$); $\nu_{\text {max. }}$. (Nujol) 1780 (lactone CO) and $1720 \mathrm{~cm}^{-1}$ (saturated CO); $\lambda_{\text {max. }}\left(\mathrm{CHCl}_{3}\right) 247(\log \varepsilon 4.31)$ and $287 \mathrm{~nm}(3.67) ; m / e 273$ (45\%).

Preparation of Cycloadducts (36) and (37).-A solution of the salt (13 b) ($0.9 \mathrm{~g}, 0.0037 \mathrm{~mol}$), hydroquinone (200 mg), water (1 ml), 2-vinylpyridine (5 ml), and $\mathrm{Et}_{3} \mathrm{~N}(4 \mathrm{ml})$, in $\mathrm{MeCN}(20 \mathrm{ml})$ was heated under reflux at $100{ }^{\circ} \mathrm{C}$ for 3 d . The course of the reaction was monitored by t.l.c. $\left(\mathrm{CHCl}_{3}\right)$. The reaction was cooled and the $\mathrm{Et}_{3} \mathrm{~N} \cdot \mathrm{HCl}$ removed. The filtrate was evaporated in vacuo and the brown gum was triturated with 1,2 -dichloroethane $(15 \mathrm{ml})$ and cooled $\left(0{ }^{\circ} \mathrm{C}\right)$. The cycloadduct (36) was precipitated as prisms ($0.7 \mathrm{~g}, 55 \%$), m.p. $235-236{ }^{\circ} \mathrm{C}$ [1,2-dichloroethane-EtOH (10:1)] (Found: C, 62.8; H, 5.7; N, 16.1; $\mathrm{Cl}, 10.5$. $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{ClN}_{4} \mathrm{O}$ requires $\left.\mathrm{C}, 63.1 ; \mathrm{H}, 5.5 ; \mathrm{N}, 16.4 ; \mathrm{Cl}, 10.4 \%\right)$; $\nu_{\text {max. }}$ (Nujol) $1720 \mathrm{~cm}^{-1}$ (saturated CO); $\lambda_{\text {max. }}\left(\mathrm{CHCl}_{3}\right) 246$ ($\log \varepsilon 4.27$) and $270 \mathrm{~nm}(\log \varepsilon 4.11)$; $m / e 342.5(37 \%)$. The filtrate was evaporated to dryness and chromatographed (preparative t.l.c., CHCl_{3}) to give 8-(4,6-dimethylpyrimidin-2-yl)-6-exo-(2-pyridyl)-8-azabicyclo[3.2.1]oct-3-en-2-one (37) $(0.1 \mathrm{~g}, 9 \%)$ as yellowish prisms, m.p. $105-106{ }^{\circ} \mathrm{C}\left[\mathrm{Et}_{2} \mathrm{O}-\right.$ EtOH ($10: 1$)] (Found: C, 70.4; H, 6.0; N, 18.2. $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{O}$ requires $\mathrm{C}, 70.6 ; \mathrm{H}, 5.9 ; \mathrm{N}, 18.3 \%$) ; $\nu_{\text {max. }}$ (Nujol) $1680 \mathrm{~cm}^{-1}$ (unsaturated CO) ; $\lambda_{\text {max. }}\left(\mathrm{CHCl}_{3}\right) 250(\log \varepsilon 4.28)$ and $293 \mathrm{~nm}(3.63) ; m / e 306(40 \%)$.

7-(5-Nitro-2-pyridyl)-7-azabicyclo[4.3.1]deca-3,8-dien-10one (56a).-A solution of the dimer (15a) ($0.7 \mathrm{~g}, 0.0016 \mathrm{~mol}$ betaine), hydroquinone (200 mg), and liquid butadiene $(10 \mathrm{ml})$ in 1,2 -dichloroethane $(10 \mathrm{ml})$ was heated in a Carius tube for 4 d at $80^{\circ} \mathrm{C}$. The solvent was removed in vacuo and the residue extracted with benzene. The extract was purified by preparative t.l.c. $\left(\mathrm{CHCl}_{3}\right)$ to give the adduct (56 a) ($0.36 \mathrm{~g}, 83 \%$) as yellow needles, m.p. $139-$ $140{ }^{\circ} \mathrm{C}$ (EtOH) (Found: C, 61.8; H, 4.8; N, 15.4. $\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}_{3}$ requires $\left.\mathrm{C}, 61.9 ; \mathrm{H}, 4.8 ; \mathrm{N}, 15.5 \%\right)$; $\nu_{\text {max. }}$ (Nujol) $1733 \mathrm{~cm}^{-1}$ (saturated CO); $\lambda_{\text {max. }}\left(\mathrm{CHCl}_{3}\right) 386 \mathrm{~nm}$ ($\log \varepsilon 4.52$); $m / e 271$ (40%).

7-(4,6-Dimethylpyrimidin-2-yl)-7-azabicyclo[4.3.1]deca-3,8-dien-10-one (56b).-A solution of the dimer (16b) (2.5 g , 0.006 mol betaine), hydroquinone (200 mg), and liquid butadiene (10 ml) in 1,2-dichloroethane (10 ml) was heated in a Carius tube for 3 d at $80^{\circ} \mathrm{C}$. The solvent was evaporated off in vacuo and the residue extracted with benzene. The extract was purified by preparative t.l.c. $\left(\mathrm{CHCl}_{3}\right)$ to give the adduct (56 b) ($0.94 \mathrm{~g}, 62 \%$), as prisms, m.p. $100-$ $101{ }^{\circ} \mathrm{C}$ (EtOH) (Found: C, 70.5; H, 6.7; N, 16.4. $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{~N}_{3} \mathrm{O}$ requires $\mathrm{C}, 70.6 ; \mathrm{H}, 6.7 ; \mathrm{N}, 16.4 \%$); $\nu_{\text {max. }}$ (Nujol) $1725 \mathrm{~cm}^{-1}$ (saturated CO); $\lambda_{\text {max. }}\left(\mathrm{CHCl}_{3}\right) 277 \mathrm{~nm}$ ($\log \varepsilon 4.50$); m/e 255 (33%).

9-Bromo-7-(5-nitro-2-pyridyl)-7-azabicyclo[4.3.1]deca-3,8-dien-10-one (57 a).—Bromine ($0.05 \mathrm{~g}, 0.0003 \mathrm{~mol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (5 ml) was added dropwise during 20 min to a well-stirred solution of the cycloadduct (56 a) ($160 \mathrm{mg}, 0.0006 \mathrm{~mol}$) in a mixture of $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{ml})$ and $\mathrm{CCl}_{4}(10 \mathrm{ml})$ at $0-5{ }^{\circ} \mathrm{C}$. The precipitate was collected and purified by preparative t.l.c. $\left(\mathrm{CHCl}_{3}\right)$ to give the bromo-derivative (57 a) $(0.189 \mathrm{~g}, 91 \%)$ as yellow prisms, m.p. $143-144{ }^{\circ} \mathrm{C}\left[\mathrm{EtOH}-\mathrm{CH}_{2} \mathrm{Cl}_{2}(1: 1)\right]$
(Found: $\mathrm{C}, 47.7 ; \mathrm{H}, 3.6 ; \mathrm{N}, 11.7$; $\mathrm{Br}, 23.2 . \mathrm{C}_{14} \mathrm{H}_{12} \mathrm{BrN}_{3} \mathrm{O}_{3}$ requires $\mathrm{C}, 48.0 ; \mathrm{H}, 3.5 ; \mathrm{N}, 12.0 ; \mathrm{Br}, 22.8 \%)$; $\mathrm{v}_{\text {max. }}$ (Nujol) $1725 \mathrm{~cm}^{-1}$ (saturated CO); $\lambda_{\text {max. }}\left(\mathrm{CHCl}_{3}\right) 350 \mathrm{~nm}(\log \varepsilon$ 3.92) ; $m / e 349$ (42%) and 351 (42%).

9-Bromo-7-(4,6-dimethylpyrimidin-2-yl)-7-azabicyclo-
[4.3.1]deca-3,8-dien-10-one (57b).-Bromine was added dropwise to a stirred solution of the cycloadduct (56 b) (0.5 g , $0.0019 \mathrm{~mol})$ in $\mathrm{CCl}_{4}(25 \mathrm{ml})$ at $0{ }^{\circ} \mathrm{C}$ until the bromine was no longer consumed (30 min). After 30 min , the yellow precipitate was filtered, washed with CCl_{4}, and purified by preparative t.l.c. $\left(\mathrm{CHCl}_{3}\right)$ to give the bromo-derivative (57b) ($0.3 \mathrm{~g}, 47 \%$), as prisms, m.p. $150-151^{\circ} \mathrm{C}(\mathrm{EtOH})$ (Found: $\mathrm{C}, 53.5 ; \mathrm{H}, 5.0 ; \mathrm{N}, 12.3 ; \mathrm{Br}, 23.6 . \quad \mathrm{C}_{15} \mathrm{H}_{16} \mathrm{BrN}_{3} \mathrm{O}$ requires C, $53.7 ; \mathrm{H}, 4.8 ; \mathrm{N}, 12.5 ; \mathrm{Br}, 24.0 \%$) ; $\nu_{\text {max. }}$ (Nujol) 1725 cm^{-1} (saturated CO); $\lambda_{\text {max. }}\left(\mathrm{CHCl}_{3}\right) 287 \mathrm{~nm}(\log \varepsilon 4.24)$; $m / e 333(21 \%)$ and $335(21 \%)$.

7-(4,6-Dimethylpyrimidin-2-yl)-7-azabicyclo[4.3.1]deca-3,8-dien-10-one Oxime (58b).—A solution of the cycloadduct (56b) ($0.5 \mathrm{~g}, 0.0019 \mathrm{~mol})$ in EtOH (75 ml) was mixed with hydroxylamine solution ($1 \mathrm{~g}, 0.143 \mathrm{~mol} \mathrm{NH}_{2} \mathrm{OH} \cdot \mathrm{HCl}$ in $4 \mathrm{ml} 10 \% \mathrm{NaOH}$) and heated under reflux for 2 h . The solution was concentrated in vacuo and extracted with $\mathrm{CHCl}_{3}(2 \times 10 \mathrm{ml})$. The crude product obtained was recrystallised from CHCl_{3} to give the oxime (58 b) (0.36 g , 70%) as prisms, m.p. $170-171{ }^{\circ} \mathrm{C}$ (Found: C, 65.5; H, 6.7; $\mathrm{N}, ~ 20.7$. $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{O}$ requires $\mathrm{C}, 65.6 ; \mathrm{H}, 6.7$; N , 20.8%); $\nu_{\text {max. }}$ (Nujol) 3380 and $3160 \mathrm{~cm}^{-1}$ (OH stretch); $\lambda_{\text {max. }}\left(\mathrm{CHCl}_{3}\right) 246 \mathrm{~nm}(\log \varepsilon 4.04)$; $m / e 270(55 \%)$.

7-(5-Nitro-2-pyridyl)-7-azabicyclo[4.3.1]deca-3,8-dien-10one Phenylhydrazone (59a).—A solution of the cycloadduct (56a) ($150 \mathrm{mg}, 0.0005 \mathrm{~mol})$ in $\mathrm{EtOH}(20 \mathrm{ml})$ was mixed with a clear solution of $\mathrm{PhNHNH}_{2} \cdot \mathrm{HCl}(0.5 \mathrm{~g}, 0.003 \mathrm{~mol})$ and $\mathrm{NaOAc}(1.0 \mathrm{~g}, 0.01 \mathrm{~mol})$ in $\mathrm{H}_{2} \mathrm{O}(25 \mathrm{ml})$. The precipitate formed after stirring the mixture for 1 h at room temperature was collected and washed with $\mathrm{H}_{2} \mathrm{O}$ to give the crude phenylhydrazone (59a) ($174 \mathrm{mg}, 96 \%$), as yellow prisms, m.p. 197-198 ${ }^{\circ} \mathrm{C}(\mathrm{EtOH})$ (Found: C, 66.3; H, 5.1. $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{~N}_{5} \mathrm{O}_{2}$ requires $\mathrm{C}, 66.5 ; \mathrm{H}, 5.3 \%$); $\nu_{\text {max. }}$ (Nujol) $3350(\mathrm{NH})$ and $1600 \mathrm{~cm}^{-1}(\mathrm{C}-\mathrm{N})$; $\lambda_{\text {max. }}\left(\mathrm{CHCl}_{3}\right) 345 \mathrm{~nm}$ ($\log \varepsilon 3.70$); $m / e 361$ (16%).

7-(4,6-Dimethylpyrimidin-2-yl)-7-azabicyclo[4.3.1]deca-3,8-dien-10-ol (60b).-(a) A solution of $\mathrm{NaBH}_{4}(30 \mathrm{mg})$ in NaOH solution ($20 \mathrm{ml}, 0.2 \mathrm{~N}$) was added dropwise to a solution of the cycloadduct (56 b) $(0.5 \mathrm{~g}, 0.0019 \mathrm{~mol})$ in $\mathrm{MeOH}(25 \mathrm{ml})$. The reaction mixture was stirred at room temperature for 15 min and then evaporated to dryness. The residue was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 5 \mathrm{ml})$ to give the alcohol (60 b) ($0.3 \mathrm{~g}, 61 \%$) as prisms, m.p. $149-150{ }^{\circ} \mathrm{C}$ (EtOH) (Found: C, 69.9; H, 7.5; N, 16.2. $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}$ requires $\mathrm{C}, 70.0 ; \mathrm{H}, 7.4 ; \mathrm{N}, 16.4 \%$); $\nu_{\max }$ (Nujol) 3330 $\mathrm{cm}^{-1}(\mathrm{OH})$; $\lambda_{\text {max. }}\left(\mathrm{CHCl}_{3}\right) 279 \mathrm{~nm}(\log \varepsilon 4.32) ; m / e 257$ (48\%).
(b) A solution of the cycloadduct (56b) ($0.5 \mathrm{~g}, 0.0019$ mol) and $\mathrm{NaOH}(5 \mathrm{~g})$ in a mixture of $\mathrm{EtOH}(40 \mathrm{ml})$ and $\mathrm{H}_{2} \mathrm{O}(25 \mathrm{ml})$ was heated under reflux until the cycloadduct was completely consumed (t.l.c., CHCl_{3}). The solution was then neutralised with glacial AcOH and extracted with $\mathrm{CHCl}_{3}(2 \times 10 \mathrm{ml})$. The CHCl_{3} extracts were evaporated to dryness in vacuo and the crude product purified by preparative t.l.c. $\left(\mathrm{CHCl}_{3}\right)$ to give the alcohol (60b) (0.3 g, 61%) as prisms, m.p. $149-150{ }^{\circ} \mathrm{C}$ (EtOH).

7-(4,6-Dimethylpyrimidin-2-yl)-10-phenyl-7-azabicyclo-[4.3.1]deca-3,8-dien-10-ol (61b).-A mixture of a few crystals of iodine and magnesium powder ($190 \mathrm{mg}, 0.0079 \mathrm{~mol}$) in anhydrous $\mathrm{Et}_{2} \mathrm{O}$ was heated under reflux. Dry bromo-
benzene ($1.23 \mathrm{~g}, 0.0078 \mathrm{~mol}$) was added dropwise during 1 h . Then a solution of the cycloadduct (56 b) ($1 \mathrm{~g}, 0.0039$ $\mathrm{mol})$ in $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{ml})$ was added dropwise. The reaction mixture was heated under reflux for a further 30 min . Ice $(10 \mathrm{~g})$ was added to the cooled reaction mixture. The precipitate was removed by filtration and the filtrate extracted with CHCl_{3}. The extract was purified by t.l.c. $\left(\mathrm{CHCl}_{3}\right)$ to give the alcohol (61b) ($1 \mathrm{~g}, 77 \%$) as needles, m.p. $145-146{ }^{\circ} \mathrm{C}(\mathrm{EtOH})$ (Found: C, 75.2; H, 7.1; N, 12.6. $\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}$ requires C, 75.1; $\mathrm{H}, 7.0 ; \mathrm{N}, 12.6 \%$) ; $\nu_{\text {max. }}$ (Nujol) $3330 \mathrm{~cm}^{-1}(\mathrm{OH}$ stretch $)$; $\lambda_{\text {max. }}\left(\mathrm{CHCl}_{3}\right) 279 \mathrm{~nm}(\log \varepsilon 4.49)$; $m / e 333$ (94%).

7-(4,6-Dimethylpyrimidin-2-yl)-7-azabicyclo[4.3.1]decan-
10 -one (62b).-A solution of the cycloadduct (56b) (0.5 g , 0.0019 mol) in EtOH (200 ml) was hydrogenated over palladium-charcoal (100 mg) under $30 \mathrm{lb} \mathrm{in}^{-2}$ hydrogen pressure at room temperature for 2 days. The course of the reaction was followed by t.l.c. $\left(\mathrm{CHCl}_{3}\right)$. On complete hydrogenation, the catalyst was filtered off and the filtrate evaporated in vacuo. The residue was purified by preparative t.l.c. $\left(\mathrm{CHCl}_{3}\right)$ to give the $\operatorname{adduct}(62 \mathrm{~b})(0.36 \mathrm{~g}, 73 \%)$ as prisms, m.p. $89-90{ }^{\circ} \mathrm{C}$ (EtOH) (Found: C, 69.4; H, 8.2; $\mathrm{N}, 16.1$. $\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}$ requires $\mathrm{C}, 69.5 ; \mathrm{H}, 8.1$; N , 16.2%) ; $v_{\max .}$ (Nujol) $1711 \mathrm{~cm}^{-1}$ (saturated CO); $\lambda_{\text {max. }}$ $\left(\mathrm{CHCl}_{3}\right) 275 \mathrm{~nm}(\log \varepsilon 3.63)$; m/e 259 (65%).

7-(4,6-Dimethylpyrimidin-2-yl)-7-azabicyclo[4.3.1]decan10 -one Oxime (63 b).-A solution of compound (62b) (0.5 g , 0.0019 mol) in EtOH (50 ml) was mixed with a solution of $\mathrm{NH}_{2} \mathrm{OH} \cdot \mathrm{HCl}(1 \mathrm{~g}, 0.0014 \mathrm{~mol})$ and $\mathrm{NaOAc}(2 \mathrm{~g}, 0.23 \mathrm{~mol})$ in $\mathrm{H}_{2} \mathrm{O}(25 \mathrm{ml})$. The reaction mixture was heated under reflux for 2 h . Then the solution was concentrated in vacuo and extracted with $\mathrm{CHCl}_{3}(2 \times 10 \mathrm{ml})$ to give the oxime (63b) ($0.35 \mathrm{~g}, 68 \%$) as prisms, m.p. $170-171{ }^{\circ} \mathrm{C}$ (EtOH) (Found: C, 65.4; H, 8.4; N, 20.5. $\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{~N}_{4} \mathrm{O}$ requires C, $65.7 ; \mathrm{H}, 8.0 ; \mathrm{N}, 20.4 \%$); $\nu_{\text {max. }}$ (Nujol) 3280 and 3360 $\mathrm{cm}^{-1}(\mathrm{OH}$ stretch $) ; \lambda_{\text {max. }}\left(\mathrm{CHCl}_{3}\right) 246 \mathrm{~nm}(\log \varepsilon 4.15) ; m / e$ 274 (50\%).

7-(4,6-Dimethylpyrimidin-2-yl)-7-azabicyclo[4.3.1]decan10 -ol (64b).-An ethanolic solution of compound (62b) ($0.5 \mathrm{~g}, 0.0019 \mathrm{~mol}$ in 50 ml EtOH) was mixed with NaOH solution (3 g , in $25 \mathrm{ml} \mathrm{H}_{2} \mathrm{O}$) and heated under reflux at $100^{\circ} \mathrm{C}$. The course of the reaction was followed by t.l.c. $\left(\mathrm{CHCl}_{3}\right)$ and when all the starting material was consumed the reaction mixture was neutralised (dilute HCl) and extracted with $\mathrm{CHCl}_{3}(2 \times 10 \mathrm{ml})$. The crude product obtained from the CHCl_{3} extracts was purified by preparative t.l.c. $\left(\mathrm{CHCl}_{3}\right)$ to give the alcohol (64 b) $(0.3 \mathrm{~g}, 60 \%)$ as prisms, m.p. $139-140^{\circ} \mathrm{C}\left[\mathrm{EtOH}-\mathrm{Et}_{2} \mathrm{O}(1: 1)\right]$ (Found: $\mathrm{C}, 66.7 ; \mathrm{H}, 9.0 ; \mathrm{N}, 13.6 . \mathrm{C}_{15} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}$ requires C , 66.9; H, 8.9; N, 13.8%); $v_{\text {max. }}$ (Nujol) $3280 \mathrm{~cm}^{-1}$ (OH stretch) $\lambda_{\text {max. }}\left(\mathrm{CHCl}_{3}\right) 255 \mathrm{~nm}(\log \varepsilon 3.95)$; $m / e 261$ (98%).

We thank the British Council for financial assistance (to L. T.).
[8/655 Received, 13th April, 1978]

REFERENCES

${ }^{1}$ Part 42 ; A. R. Katritzky, N. Dennis, and H. A. Dowlatshahi, J.C.S. Chem. Comm., 1978, 316
${ }^{2}$ J. Banerji, N. Dennis, J. Frank, A. R. Katritzky, and T. Matsuo, J.C.S. Perkin I, 1976, 2334.
${ }^{3}$ N. Dennis, B. Ibrahim, and A. R. Katritzky, Synthesis, 1976, 105.
${ }^{4}$ N. Dennis, B. Ibrahim, and A. R. Katritzky, J.C.S. Perkin I, 1976, 2296.
${ }^{5}$ B. Robinson, Chem. Rev., 1969, 69, 227
${ }^{6}$ W. Pfitzinger, J. prakt. Chem. [2], 1886, 38, 100.
${ }^{7}$ P. Friedlaender, Ber., 1882, 15, 2572.
${ }^{8}$ M. J. Haddadin and C. H. Issidorides, Heterocycles, 1976, 4, 767.
${ }^{9}$ For full details see L. B. Turker, Ph.D. Thesis, University of East Anglia, 1977.
${ }^{10}$ J. B. Lambert, H. F. Shurvell, L. Verbit, R. G. Cooks, and G. H. Stout, ' Organic Structural Analysis,' ed. A. Streitwieser, jun., Macmillan Publishing Co. Inc., New York, 1976, p. 65.
${ }^{11}$ N. Dennis, A. R. Katritzky, S. K. Parton, Y. Nomura, Y. Takahashi, and Y. Takeuchi, J.C.S. Perkin I, 1976, 2289.
${ }^{12}$ N. Dennis, A. R. Katritzky, G. J. Sabounji, and L. Turker, J.C.S. Perkin I, 1977, 1930.

